
Audio Toolbox™
User’s Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Audio Toolbox™ User’s Guide
© COPYRIGHT 2016 - 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2016 Online only New for Version 1.0 (Release 2016a)
September 2016 Online only Revised for Version 1.1 (Release 2016b)
March 2017 Online only Revised for Version 1.2 (Release 2017a)
September 2017 Online only Revised for Version 1.3 (Release 2017b)
March 2018 Online only Revised for Version 1.4 (Release 2018a)
September 2018 Online only Revised for Version 1.5 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Use the Audio Labeler
1

Label Audio Using Audio Labeler . 1-2
Load Unlabeled Data . 1-2
Create Label Definitions . 1-3
Export Label Definitions . 1-8
Export Labeled Audio Data . 1-9
Prepare Audio Datastore for Deep Learning Workflow 1-11

Speech2Text Walkthrough Chapter
2

Speech-to-Text Transcription . 2-2
Download Extended Audio Toolbox Functionality from File

Exchange . 2-3
Interface with Google Speech . 2-3
Interface with IBM Watson Speech . 2-5
Interface with Microsoft Azure Speech 2-8
Billing Details . 2-10

Measure Impulse Response of an Audio System
3

Impulse Response Measurer Walkthrough 3-2
Configure Audio I/O System . 3-2
Configure IR Acquisition Method . 3-2
Acquire IR Measurements . 3-4
Analyze and Manage IR Measurements 3-5

iii

Contents

Export IR Measurements . 3-9

Design and Play a MIDI Synthesizer
4

Design and Play a MIDI Synthesizer . 4-2
Convert MIDI Note Messages to Sound Waves 4-2
Synthesize MIDI Messages . 4-3
Synthesize Real-Time Note Messages from MIDI Device 4-4

MIDI Device Interface
5

MIDI Device Interface . 5-2
MIDI . 5-2
MIDI Devices . 5-2
MIDI Messages . 5-3

Dynamic Range Control
6

Dynamic Range Control . 6-2
Linear to dB Conversion . 6-3
Gain Computer . 6-3
Gain Smoothing . 6-5
Make-Up Gain . 6-8
dB to Linear Conversion . 6-9
Apply Calculated Gain . 6-9
Example: Dynamic Range Limiter . 6-9

iv Contents

MIDI Control for Audio Plugins
7

MIDI Control for Audio Plugins . 7-2
MIDI and Plugins . 7-2
Use MIDI with MATLAB Plugins . 7-2

MIDI Control Surface Interface
8

MIDI Control Surface Interface . 8-2
About MIDI . 8-2
MIDI Control Surfaces . 8-2
Use MIDI Control Surfaces with MATLAB and Simulink 8-3

Use the Audio Test Bench
9

Audio Test Bench Walkthrough . 9-2
Choose Object Under Test . 9-2
Run Audio Test Bench . 9-3
Debug Source Code of Audio Plugin . 9-4
Open Scopes . 9-6
Configure Input to Audio Test Bench . 9-6
Configure Output from Audio Test Bench 9-8
Call Custom Visualization of Audio Plugin 9-9
Synchronize Plugin Property with MIDI Control 9-10
Play the Audio and Save the Output File 9-11
Validate and Generate Audio Plugin 9-11
Generate MATLAB Script . 9-12

v

Audio Plugin Example Gallery
10

Audio Plugin Example Gallery . 10-2
Audio Effects . 10-2
Filters . 10-2
Gain Control . 10-2
Spatial Audio . 10-2
Communicate Between MATLAB and DAW 10-2
Music Information Retrieval . 10-2
Speech Processing . 10-2
Audio Plugin Examples . 10-2

Equalization
11

Equalization . 11-2
Equalization Design Using Audio Toolbox 11-2
EQ Filter Design . 11-2
Lowpass and Highpass Filter Design 11-6
Shelving Filter Design . 11-7

Deployment
12

Desktop Real-Time Audio Acceleration with MATLAB Coder
. 12-2

Audio I/O User Guide
13

Run Audio I/O Features Outside MATLAB and Simulink 13-2

vi Contents

Block Example Repository
14

Decrease Underrun . 14-2

Block Example Repository
15

Extract Cepstral Coefficients . 15-2

Tune Center Frequency Using Input Port 15-4

Gate Audio Signal Using VAD . 15-6

Frequency-Domain Voice Activity Detection 15-8

Visualize Noise Power . 15-9

Detect Presence of Speech . 15-13

Perform Graphic Equalization . 15-15

Split-Band De-Essing . 15-17

Diminish Plosives from Speech . 15-18

Suppress Loud Sounds . 15-19

Attenuate Low-Level Noise . 15-22

Suppress Volume of Loud Sounds . 15-25

Gate Background Noise . 15-28

Output Values from MIDI Control Surface 15-31

Apply Frequency Weighting . 15-33

Compare Loudness Before and After Audio Processing 15-35

vii

Two-Band Crossover Filtering for a Stereo Speaker System
. 15-37

Mimic Acoustic Environments . 15-39

Perform Parametric Equalization . 15-41

Perform Octave Filtering . 15-43

Read from Microphone and Write to Speaker 15-45

Channel Mapping . 15-48

Trigger Gain Control Based on Loudness Measurement . . . 15-50

Real-Time Parameter Tuning
16

Real-Time Parameter Tuning . 16-2
Programmatic Parameter Tuning . 16-2

Sample Audio Files
17

Sample Audio Files . 17-2

Tips and Tricks for Plugin Authoring
18

Tips and Tricks for Plugin Authoring 18-2
Avoid Disrupting the Event Queue in MATLAB 18-2
Separate Code for Features Not Supported for Plugin

Generation . 18-6
Implement Reset Correctly . 18-8

viii Contents

Implement Plugin Composition Correctly 18-8
Address "A set method for a non-Dependent property should not

access another property" Warning in Plugin 18-11
Use System Object That Does Not Support Variable-Size Signals

. 18-13
Using Enumeration Parameter Mapping 18-16

Spectral Descriptors Chapter
19

Spectral Descriptors . 19-2

ix

Use the Audio Labeler

1

Label Audio Using Audio Labeler
The Audio Labeler app enables you to interactively define and visualize ground-truth
labels for audio datasets. This example shows how you can create label definitions and
then interactively label a set of audio files. The example also shows how to export the
labeled ground truth data, which you can then use with audioDatastore to train a
machine learning system.

Load Unlabeled Data
1 To open the Audio Labeler, at the MATLAB® command prompt, enter:

audioLabeler
2 This example uses the audio files included with Audio Toolbox. To locate the file path

on your system, at the MATLAB command prompt, enter:

fullfile(matlabroot,'toolbox','audio','samples')

To load audio from a file, click Load > Audio Folders and select the folder
containing audio files you want to label.

1 Use the Audio Labeler

1-2

Create Label Definitions
Define File-Level Labels

The audio samples include music, speech, and ambience. To create a file-level label that
defines the contents of the audio file as music, speech, ambience, or unknown, click

 . Specify the Label Name as Content, the Data Type as categorical, and the
Categories as music, speech, ambience, or unknown. Set the Default Value of the
label definition to unknown.

 Label Audio Using Audio Labeler

1-3

All audio files in the Data Browser are now associated with the Content label name. To
listen to the audio file selected in the Data Browser and confirm that it is a music file,
click . To set the value of the Contents label, click unknown in the File Labels panel
and select music from the drop-down menu.

The selected audio file now has the label name Content with value music assigned to it.
You can continue setting the Content value for each file by selecting a file in the Data
Browser and then selecting a value from the File Labels panel.

1 Use the Audio Labeler

1-4

Define Region-Level Labels

You can define region-level labels by clicking in the ROI Labels panel. Create a
region-level label that indicates if speech is present. Specify the Label Name as
SpeechActivity, the Data Type as logical, and the Default Value as true.

Create another region-level label, this time with Label Name set to VUV, Data Type set
to categorical, and categories specified as voiced and unvoiced.

Select Rainbow-16-8-mono-114sec.wav from the Data Browser. The file is 114
seconds long. By default, the waveform viewer shows the entire contents of the file. To

 Label Audio Using Audio Labeler

1-5

display tools for zooming and panning, hover over the top right corner of the plot. Zoom
in on the first five seconds of the audio file.

Click the zoom control button again to return the cursor to labeling mode. Then, select
the part of the signal that corresponds to the first word on the waveform viewer. Hover
the cursor over the ROI bar, which is directly to the right of the ROI label. The ROI bar
has a one-to-one correspondence with the waveform viewer. When you select a region in
the plot and then place your mouse in the ROI bar, the shadow of the region appears. To
assign the region the default true value for the SpeechActivity label name, click the
shadow. Label the first three regions of speech activity.

1 Use the Audio Labeler

1-6

Zoom in on the third speech activity region. Label the regions of speech as voiced and
unvoiced.

 Label Audio Using Audio Labeler

1-7

Export Label Definitions
You can export label definitions as a MAT file or as a MATLAB script. Maintaining label
definitions enables consistent labeling between users and sessions. Select Export >
Label Definitions > To File.

1 Use the Audio Labeler

1-8

The labels are saved as an array of signalLabelDefinition objects. In your next
session, you can import the label definitions by selecting Import > Label Definitions >
From File.

Export Labeled Audio Data
You can export the labeled signal set to a file or to your workspace. Select Export >
Labels > To Workspace.

The Audio Labeler creates a labeledSignalSet object named
labeledSet_HHMMSS, where HHMMSS is the time the object is created in hours,
minutes, and seconds.

labeledSet_142356

labeledSet_142356 =

 labeledSignalSet with properties:

 Source: {29×1 cell}
 NumMembers: 29
 TimeInformation: "inherent"
 Labels: [29×3 table]
 Description: ""

 Label Audio Using Audio Labeler

1-9

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

The labels you created are saved as a table to the Labels property.

labeledSet_142356.Labels

ans =

 29×3 table

 Content SpeechActivity VUV
 ________ ______________ ___________

 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav ambience [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav unknown [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav unknown [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Click-16-44p1-mono-0.2secs.wav unknown [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav speech [10×2 table] [7×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav ambience [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav speech [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\FunkyDrums-44p1-stereo-25secs.mp3 music [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\FunkyDrums-48-stereo-25secs.mp3 music [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav unknown [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav ambience [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav speech [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\MainStreetOne-24-96-stereo-63secs.wav ambience [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\NoisySpeech-16-22p5-mono-5secs.wav speech [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Rainbow-16-8-mono-114secs.wav speech [3×2 table] [2×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RainbowNoisy-16-8-mono-114secs.wav speech [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RandomOscThree-24-96-stereo-13secs.aif music [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RockDrums-44p1-stereo-11secs.mp3 music [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RockDrums-48-stereo-11secs.mp3 music [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RockGuitar-16-44p1-stereo-72secs.wav music [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RockGuitar-16-96-stereo-72secs.flac unknown [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg music [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\SpeechDFT-16-8-mono-5secs.wav speech [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\TrainWhistle-16-44p1-mono-9secs.wav ambience [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Turbine-16-44p1-mono-22secs.wav ambience [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\WashingMachine-16-44p1-stereo-10secs.wav ambience [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\WashingMachine-16-8-mono-1000secs.wav ambience [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\WashingMachine-16-8-mono-200secs.wav ambience [0×2 table] [0×2 table]
 C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\WaveGuideLoopOne-24-96-stereo-10secs.aif music [0×2 table] [0×2 table]

1 Use the Audio Labeler

1-10

The file names associated with the labels are saved as a cell array to the Source
property.

labeledSet_142356.Source

ans =

 29×1 cell array

 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'}
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Click-16-44p1-mono-0.2secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\FunkyDrums-44p1-stereo-25secs.mp3' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\FunkyDrums-48-stereo-25secs.mp3' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\MainStreetOne-24-96-stereo-63secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\NoisySpeech-16-22p5-mono-5secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Rainbow-16-8-mono-114secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RainbowNoisy-16-8-mono-114secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RandomOscThree-24-96-stereo-13secs.aif' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RockDrums-44p1-stereo-11secs.mp3' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RockDrums-48-stereo-11secs.mp3' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RockGuitar-16-44p1-stereo-72secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\RockGuitar-16-96-stereo-72secs.flac' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\SpeechDFT-16-8-mono-5secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\TrainWhistle-16-44p1-mono-9secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\Turbine-16-44p1-mono-22secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\audio\samples\WashingMachine-16-44p1-stereo-10secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\WashingMachine-16-8-mono-1000secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\WashingMachine-16-8-mono-200secs.wav' }
 {'C:\Program Files\MATLAB\R2018b\toolbox\audio\samples\WaveGuideLoopOne-24-96-stereo-10secs.aif' }

Prepare Audio Datastore for Deep Learning Workflow
To continue on to a deep learning or machine learning workflow, use audioDatastore.
Using an audio datastore enables you to apply capabilities that are common to machine

 Label Audio Using Audio Labeler

1-11

learning applications, such as splitEachLabel. splitEachLabel enables you split
your data into train and test sets.

Create an audio datastore for your labeled signal set. Specify the location of the audio
files as the first argument of audioDatastore and set the Labels property of
audioDatastore to the Labels property of the labeled signal set.

ADS = audioDatastore(labeledSet_142356.Source,'Labels',labeledSet_142356.Labels)

ADS =

 audioDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 ' ...\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Labels: 29-by-3 table
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

Call countEachLabel and specify the Content table variable to count the number of
files that are labeled as ambience, music, speech, or unknown.

countEachLabel(ADS,'TableVariable','Content')

ans =

 4×2 table

 Content Count
 ________ _____

 ambience 10
 music 9
 speech 7
 unknown 3

For examples of using labeled audio data in a machine learning or deep learning
workflow, see:

1 Use the Audio Labeler

1-12

• “Speech Command Recognition Using Deep Learning”
• “Speaker Identification Using Pitch and MFCC”
• “Denoise Speech Using Deep Learning Networks”
• “Classify Gender Using Long Short-Term Memory Networks”
• “Music Genre Classification Using Wavelet Time Scattering”

See Also
audioDatastore | audioDeviceReader | audioDeviceWriter | labeledSignalSet
| signalLabelDefinition

 See Also

1-13

Speech2Text Walkthrough Chapter

2

Speech-to-Text Transcription
Audio Toolbox enables you to interface with third-party speech-to-text APIs from MATLAB.

To interface with third-party speech-to-text APIs, you must have the following:

• Audio Toolbox release R2017a or above
• Audio Toolbox extended functionality available from File Exchange on page 2-3
• One of the following APIs:

• Google Speech API on page 2-3
• IBM Watson Speech API on page 2-5
• Microsoft Azure Speech API on page 2-8

The third-party APIs require you to generate keys for identification purposes. To begin,
download the extended Audio Toolbox functionality from File Exchange. Then follow the
instructions for interfacing with your chosen third-party speech-to-text API.

2 Speech2Text Walkthrough Chapter

2-2

Download Extended Audio Toolbox Functionality from File
Exchange
Navigate to the speech2text functionality on File Exchange, download the files, and then
extract the content of the archive to your workspace. The download contains:

• speechClient –– An object that specifies which third-party API to interface with, and
additional properties that define the interface which are specific to the third-party API.

• speech2text –– A function that takes as input an audio signal in MATLAB and
returns text and additional information, as transcribed through the third-party
interface.

Interface with Google Speech
Get Google Speech Authentication Keys

To interface with Google Speech from MATLAB, you must first create an account with
Google Speech and generate an authorization key. The following steps describe how to
create the authorization key. The steps are also described in the Google documentation.

1 Navigate to the APIs & Services->Credentials panel in the Cloud Platform Console.
2 Select Create credentials, then select API key from the drop-down menu.
3 Click the Create button. A dialog box displays your newly created key.
4 Once you have the API authorization key, create a JSON file:

• Add the following content to the JSON file, replacing yourAuthenticaionKey
with the authentication key you created in step 3:

{
 "key" : "yourAuthenticationKey"
}

• Name the JSON file Google_Credentials_Speech2text.json and save it to a
secure location.

Create speechClient Object

Create a speechClient object to interface with the Google Speech-to-Text API:

transcriber = speechClient('Google')

 Speech-to-Text Transcription

2-3

https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text
https://cloud.google.com/docs/authentication/api-keys
https://console.cloud.google.com/apis/credentials?_ga=2.41583650.-1025167873.1501687658

transcriber =

 speechClient with no properties.

You can specify the recognition configuration for the Google speech client by specifying
name-value pairs during creation. For example, to create a speech object that tells the
Google translate service that the input speech is Australian English, specify
languageCode as 'en-AU'.

transcriber = speechClient('Google','languageCode','en-AU')

transcriber =

 speechClient with properties:

 languageCode: 'en-AU'

By default, the language code is set to 'en-US'.

The speechClient object does not perform input checks on the name-value pairs.
Specify name-value pairs as described in the Google recognition configuration
documentation. You cannot set the encoding or sampleRateHertz fields using
speechClient. The encoding field is always set to FLAC, and sampleRateHertz is
specified through the speech2text function.

Perform Speech-to-Text Transcription

Call the speech2text function with a speechClient object, the speech you want to
transcribe, and the sample rate.

[speech,SampleRate] = audioread('Counting-16-44p1-mono-15secs.wav');

text = speech2text(transcriber,speech,SampleRate)

text =

 5×2 table

 TRANSCRIPT CONFIDENCE
 _______________________________ __________

 "1" 0.79176
 " 2" 0.77258
 " 3" 0.79722

2 Speech2Text Walkthrough Chapter

2-4

https://cloud.google.com/speech-to-text/docs/reference/rest/v1/RecognitionConfig
https://cloud.google.com/speech-to-text/docs/reference/rest/v1/RecognitionConfig

 " 4" 0.73335
 " five six seven eight nine 10" 0.89762

The speech2text function outputs a table containing the transcript and confidence of
the transcript. The output table can contain additional variables depending on the
configuration of the transcriber. For example, if you create a transcriber that outputs
multiple alternatives for each word, then an ALTERNATIVES variable is added to the text
output:

transcriber = speechClient('Google','languageCode','en-US','maxAlternatives',2);
text = speech2text(transcriber,speech,SampleRate)

text =

 5×3 table

 TRANSCRIPT CONFIDENCE ALTERNATIVES
 _______________________________ __________ ____________

 "1" 0.79176 [1×2 table]
 " 2" 0.77258 [1×2 table]
 " 3" 0.79721 [1×2 table]
 " 4" 0.73335 [1×2 table]
 " five six seven eight nine 10" 0.89762 [1×2 table]

You can also set the HTTP client timeout for your transcription request by setting the
HTTPTimeOut name-value pair for speech2text:

text = speech2text(transcriber,speech,SampleRate,'HTTPTimeOut',25);

Interface with IBM Watson Speech
Get IBM Watson Speech Service Credentials

To interface with IBM Watson Speech from MATLAB, you must first create an account
with IBM Bluemix and obtain a user name and password. The following steps describe
how to create an account. The steps are also described in the IBM Documentation.

1 Navigate to the Speech to Text service and sign up for a free Bluemix account or log
in to your existing account.

2 After you log in, enter speech-to-text-tutorial in the Service name field of the
Speech to Text page. Click Create.

 Speech-to-Text Transcription

2-5

https://console.bluemix.net/docs/services/speech-to-text/getting-started.html#gettingStarted
https://console.bluemix.net/catalog/services/speech-to-text/

3 Copy the credentials created:

a Click Service credentials
b Click View credentials under Actions
c Copy the user name and password

4 Once you have the Service credentials, create a JSON file:

• Add the following content to the JSON file, replacing yourUserName and
yourPassword with the user name and password you created in step 3:

{
 "key" : "yourUserName",
 "password" : "yourPassword"
}

• Name the JSON file IBM_Credentials_Speech2text.json and save it to a
secure location.

Create speechClient Object

Create a speechClient object to interface with the IBM Speech-to-Text API:

transcriber = speechClient('IBM')

transcriber =

 speechClient with no properties.

You can specify the recognition configuration for the IBM speech client by specifying
name-value pairs during creation. For example, to create a speech object that tells the
IBM translate service that the input speech is English narrowband, specify model as
'en-US_NarrowbandModel'.

transcriber = speechClient('IBM','model','en-US_NarrowbandModel')

transcriber =

 speechClient with properties:

 model: 'en-US_NarrowbandModel'

By default, the language model is set to 'en-US_BroadbandModel'.

The speechClient object does not perform input checks on the name-value pairs.
Specify name-value pairs as described in the IBM Watson Speech to Text API reference.

2 Speech2Text Walkthrough Chapter

2-6

https://www.ibm.com/watson/developercloud/speech-to-text/api/v1/curl.html?curl

When you specify the sample rate using speech2text, the IBM translate service
resamples the audio to the bandwidth specified by the model.

Perform Speech-to-Text Transcription

Call the speech2text function with a speechClient object, the speech you want to
transcribe, and the sample rate.

[speech,SampleRate] = audioread('Counting-16-44p1-mono-15secs.wav');

text = speech2text(transcriber,speech,SampleRate)

text =

 6×2 table

 TRANSCRIPT CONFIDENCE
 ___________ __________

 "five six " 0.98
 "so " 0.311
 "eight " 0.492
 "not " 0.511
 "and " 0.501
 "ten " 0.248

The speech2text function outputs a table containing the transcript and confidence of
the transcript. The output table can contain additional variables depending on the
configuration of the transcriber. For example, if you create a transcriber that outputs
multiple alternatives for each word, then an ALTERNATIVES variable is added to the text
output. Create a new speech client, but this time use the default model (en-
US_BroadbandModel) and set max_alternatives to two. The default model, en-
US_BroadbandModel, performs much better than en-US_NarrowbandModel for the
audio signal in this example.

transcriber = speechClient('IBM','max_alternatives',2);
text = speech2text(transcriber,speech,SampleRate)

text =

 10×3 table

 TRANSCRIPT CONFIDENCE ALTERNATIVES
 __________ __________ ____________

 Speech-to-Text Transcription

2-7

 "one " 0.994 [1×2 table]
 "to " 0.995 [1×2 table]
 "three " 0.971 [1×2 table]
 "for " 1 [1×2 table]
 "five " 0.997 [1×2 table]
 "six " 0.997 [1×2 table]
 "seven " 0.996 []
 "eight " 0.969 [1×2 table]
 "nine " 0.987 [1×2 table]
 "then " 0.553 [1×2 table]

You can also set the HTTP client timeout for your transcription request by setting the
HTTPTimeOut name-value pair for speech2text:

text = speech2text(transcriber,speech,SampleRate,'HTTPTimeOut',25);

Interface with Microsoft Azure Speech
Get Microsoft Azure Speech API Keys

To interface with Microsoft Azure Speech from MATLAB, you must first create
subscription keys. The following steps describe how to create an account.

1 Navigate to the Cognitive Services and sign up for a free Azure account or log in to
your existing account.

2 After you log in, from the Cognitive Services page, click Speech APIs and then Get
API Key for Bing Speech.

3 Copy the keys created.
4 Once you have the keys, create a JSON file:

• Add the following content to the JSON file, replacing yourKey1 and yourKey2
with the keys you created in step 3:

{
 "Key1" : "yourKey1",
 "Key2" : "yourKey2"
}

• Name the JSON file Microsoft_Credentials_Speech2text.json and save it
to a secure location.

2 Speech2Text Walkthrough Chapter

2-8

https://azure.microsoft.com/en-us/try/cognitive-services/
https://azure.microsoft.com/en-us/try/cognitive-services/

Set up speechClient

Create a speechClient object to interface with the Microsoft Speech-to-Text API:

transcriber = speechClient('Microsoft')

transcriber =

 speechClient with no properties.

You can specify the recognition configuration for the Microsoft speech client by specifying
name-value pairs during creation. For example, to create a speech object that tells the
Microsoft translate service that the input speech is a dictation, specify recognition as
'dictation'.

transcriber = speechClient('Microsoft','recognition','dictation')

transcriber =

 speechClient with properties:

 recognition: 'dictation'

By default, the language parameter is set to en-US, the format parameter is set to
detailed, and the recognition parameter is set to Interactive.

The speechClient object does not perform input checks on the name-value pairs.
Specify name-value pairs as described in Get started with speech recognition by using the
REST API.

Perform Speech-to-Text Transcription

Call the speech2text function with a speechClient object, the speech you want to
transcribe, and the sample rate.

[speech,SampleRate] = audioread('SpeechDFT-16-8-mono-5secs.wav');

text = speech2text(transcriber,speech,SampleRate)

text =

 5×5 table

 CONFIDENCE LEXICAL ITN MASKEDITN DISPLAY
 __________ ___ ___ ___ __

 Speech-to-Text Transcription

2-9

https://docs.microsoft.com/en-us/azure/cognitive-services/speech/getstarted/getstartedrest?tabs=Powershell
https://docs.microsoft.com/en-us/azure/cognitive-services/speech/getstarted/getstartedrest?tabs=Powershell

 0.8549 'the discrete fourier transform of a real valued signal is conjugate cometric' 'the discrete fourier transform of a real valued signal is conjugate cometric' 'the discrete fourier transform of a real valued signal is conjugate cometric' 'The discrete fourier transform of a real valued signal is conjugate cometric.'
 0.8369 'the discrete fourier transform of a real valued signal is conjugate symmetric' 'the discrete fourier transform of a real valued signal is conjugate symmetric' 'the discrete fourier transform of a real valued signal is conjugate symmetric' 'The discrete fourier transform of a real valued signal is conjugate symmetric.'
 0.8369 'discrete fourier transform of a real valued signal is conjugate cometric' 'discrete fourier transform of a real valued signal is conjugate cometric' 'discrete fourier transform of a real valued signal is conjugate cometric' 'Discrete fourier transform of a real valued signal is conjugate cometric.'
 0.81006 'the discrete fourier transform of a real valued signal is conjugates ametric' 'the discrete fourier transform of a real valued signal is conjugates ametric' 'the discrete fourier transform of a real valued signal is conjugates ametric' 'The discrete fourier transform of a real valued signal is conjugates ametric.'
 0.81006 'discrete fourier transform of a real valued signal is conjugate symmetric' 'discrete fourier transform of a real valued signal is conjugate symmetric' 'discrete fourier transform of a real valued signal is conjugate symmetric' 'Discrete fourier transform of a real valued signal is conjugate symmetric.'

The speech2text function outputs a table containing the lexical, ITN, masked, and
display form of the recognized text, and the confidence scores.

You can also set the HTTP client timeout for your transcription request by setting the
HTTPTimeOut name-value pair for speech2text:

text = speech2text(transcriber,speech,SampleRate,'HTTPTimeOut',25);

Billing Details
Audio Toolbox enables you to interface with third-party speech-to-text APIs. However, the
third-party speech APIs are not free for extended use. Consult the individual API
documentation for pricing details:

• Google Speech-to-Text Pricing
• IBM Watson Speech-to-Text Pricing
• Microsoft Azure Speech-to-Text Pricing

See Also
Apps
Audio Labeler

Functions
voiceActivityDetector

External Websites
• speech2text on File Exchange

2 Speech2Text Walkthrough Chapter

2-10

https://cloud.google.com/speech-to-text/pricing
https://console.bluemix.net/docs/services/speech-to-text/faq-pricing.html#pricing
https://azure.microsoft.com/en-us/pricing/
https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text

Measure Impulse Response of an
Audio System

3

Impulse Response Measurer Walkthrough
In this tutorial, explore key functionality of the Impulse Response Measurer. The
Impulse Response Measurer app enables you to

• Configure your audio I/O system.
• Acquire impulse response (IR) measurements using either the Exponential Swept Sine

or Maximum Length Sequences methods.
• View and manage captured IR data.
• Export the data to a file, workspace, or other app for further study.

To begin, open the Impulse Response Measurer app by selecting the icon from the
app gallery.

Configure Audio I/O System
The Impulse Response Measurer app enables you to specify an audio device, sample
rate, player channel, and recorder channel. The audio device must be a real or virtual
device enabled for simultaneous playback and recording (full-duplex mode) and must use
a supported driver. Supported drivers are platform-specific:

• Windows® –– ASIO™
• Mac –– CoreAudio
• Linux® –– ALSA

Valid sample rates depend on your specified audio device.

You can use the level monitor to verify the configuration of your audio I/O system.

Configure IR Acquisition Method
To configure your IR acquisition method, use the Method and Method Settings sections
of the toolstrip.

3 Measure Impulse Response of an Audio System

3-2

You can select the method to acquire IR measurements as either:

• Maximum Length Sequences (MLS)
• Exponential Swept Sine (Exponential Swept Sine)

Both methods for IR acquisition have the same basic settings, including:

• Number of Runs –– Number of times the excitation signal is sent within a single
capture. Multiple runs are used to average individual impulse response captures to
reduce measurement noise.

• Duration per Run (s) –– Total time of each run in seconds.
• Excitation Level (dBFS) –– The level of the excitation signal in dBFS.

Both methods for IR acquisition also have the same advanced run settings, including:

• Wait before first run –– Delay before starting first run. The delay allows time for any
last-minute tasks, such as exiting a room before testing its acoustics.

• Pause between runs –– Duration of pause between runs. During a pause, the
excitation signal is not sent, and audio is not recorded. When using the Exponential
Swept Sine method, include a pause between runs to avoid buildup of reverberations.
Pauses between runs are not recommended when using the MLS method.

• Number of warmup runs –– Number of times to output the excitation signal before
acquisition. The MLS method assumes the signal it acquires is a combination of the
excitation signal and its impulse response. Use warmup runs to remove transients.

The total capture time is a sum of run durations, pauses, and the initial wait:

 Impulse Response Measurer Walkthrough

3-3

The Exponential Swept Sine method has additional Advanced Settings to control the
excitation signal, including:

• Sweep start frequency
• Sweep stop frequency
• Sweep duration
• End silence duration

When using the Exponential Swept Sine method, the Run Duration is divided into
Sweep duration and End silence duration. During the end silence, the app continues
to record audio, enabling acquisition of the response over the entire range of the
frequency sweep.

Acquire IR Measurements
For this example, use the MLS method with default settings. Once you have your audio
device set up, click Capture. A dialog box opens that displays the progress of your
capture. IR Measurements are captured twice.

3 Measure Impulse Response of an Audio System

3-4

Analyze and Manage IR Measurements
After the capture, the Impulse Response Measurer app stores the captured data locally.
The Data Browser displays the title of the captured data, the colors used for plotting,
and information about the settings used to acquire the data. You can double-click a color
in the Data Browser to choose which color you want associated with each impulse
response. You can also double-click the title to rename your captured data. Rename your
captures as FirstCapture and SecondCapture, and change the colors to pink and
green. To make one impulse response plot appear on top of the other, select the title in
the Data Browser. Select the capture you relabeled FirstCapture.

 Impulse Response Measurer Walkthrough

3-5

By default, the impulse response and magnitude response are plotted. You can view any
combination of the impulse response, magnitude, and phase response using the Layout
button. Minimize the Data Browser, then select the phase response plot for inclusion.

3 Measure Impulse Response of an Audio System

3-6

 Impulse Response Measurer Walkthrough

3-7

You can toggle the relative size of the plot by moving the dividers. You can zoom in and
out by selecting the plus and minus icons on the UI. The icons appear when your pointer
is over the plot. Zooming in and out of either the magnitude response or the phase
response updates the other. Zoom in on the impulse response plot and in the range 100–
1000 Hz of your frequency response plots.

3 Measure Impulse Response of an Audio System

3-8

Export IR Measurements
To view export options for further analysis or use, select the Export button.

 Impulse Response Measurer Walkthrough

3-9

Export the data to your workspace. The data is saved as a table. To inspect how the data
is saved, display the table you exported.

irdata_172519

irdata_172519 =

 2×14 table

 TimeOfCapture ImpulseResponse MagnitudeResponse PhaseResponse Device SampleRate PlayerChannel RecorderChannel Method NumRuns DurationPerRun ExcitationLevel RawAudioData OtherMetaData
 __________________________ _______________ _________________ _____________ _____________ __________ _____________ _______________ ______ _______ ______________ _______________ ____________ _____________

 FirstCapture 21-Dec-2017 16:40:31 -0500 [1x1 struct] [1x1 struct] [1x1 struct] "ASIO4ALL v2" 44100 1 1 "MLS" 2 0.5 -6 [1x1 struct] [1x1 struct]
 SecondCapture 21-Dec-2017 16:42:18 -0500 [1x1 struct] [1x1 struct] [1x1 struct] "ASIO4ALL v2" 44100 1 1 "MLS" 2 0.5 -6 [1x1 struct] [1x1 struct]

When you export the data as a MAT-file, the same table is saved as when you export to the
workspace. When you select to export the data as a WAV file, each impulse response is
saved as a separate WAV file. The title of the capture as the name of the WAV file. In this
example, selecting to export data to audio WAV file places two WAV files in the specified
folder, FirstCapture.wav and SecondCapture.wav.

To analyze your captured data further, view the data in the Filter Visualization
Tool or Signal Analyzer app.

3 Measure Impulse Response of an Audio System

3-10

See Also
Apps
Impulse Response Measurer

System Objects
audioPlayerRecorder | reverberator | splMeter

Related Examples
• “Measure Impulse Response of an Audio System”
• “Measure Frequency Response of an Audio Device”

 See Also

3-11

Design and Play a MIDI Synthesizer

4

Design and Play a MIDI Synthesizer
The MIDI protocol enables you to send and receive information describing sound. A MIDI
synthesizer is a device or software that synthesizes sound in response to incoming MIDI
data. In its simplest form, a MIDI synthesizer converts MIDI note messages to an audio
signal. More complicated synthesizers provide fine-tune control of the resulting sound,
enabling you to mimic instruments. In this tutorial, you create a monophonic synthesizer
that converts a stream of MIDI note messages to an audio signal in real time.

To learn about interfacing with MIDI devices in general, see “MIDI Device Interface” on
page 5-2.

Convert MIDI Note Messages to Sound Waves
MIDI note information is packaged as a NoteOn or NoteOff midimsg object in Audio
Toolbox. Both NoteOn and NoteOff midimsg objects have Note and Velocity
properties:

• Velocity indicates how hard a note is played. By convention, Note On messages with
velocity set to zero represent note off messages. Representing note off messages with
note on messages is more efficient when using Running Status.

• Note indicates the frequency of the audio signal. The Note property takes a value
between zero and 127, inclusive. The MIDI protocol specifies that 60 is Middle C, with
all other notes relative to that note. Create a MIDI note on message that indicates to
play Middle C.

channel = 1;
note = 60;
velocity = 64;
msg = midimsg('NoteOn',channel,note,velocity)

msg =

 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 0 [90 3C 40]

To interpret the note property as frequency, use the equal tempered scale and the A440
convention:

frequency = 440 * 2^((msg.Note-69)/12)

4 Design and Play a MIDI Synthesizer

4-2

frequency =

 261.6256

Some MIDI synthesizers use an Attack Decay Sustain Release (ADSR) envelope to control
the volume, or amplitude, of a note over time. For simplicity, use the note velocity to
determine the amplitude. Conceptually, if a key is hit harder, the resulting sound is louder.
The Velocity property takes a value between zero and 127, inclusive. Normalize the
velocity and interpret as the note amplitude.

amplitude = msg(1).Velocity/127

amplitude =

 0.5039

To synthesize a sine wave, create an audioOscillator System object™. To play the
sound to your computer's default audio output device, create an audioDeviceWriter
System object. Step the objects for two seconds and listen to the note.

osc = audioOscillator('Frequency',frequency,'Amplitude',amplitude);
deviceWriter = audioDeviceWriter('SampleRate',osc.SampleRate);

tic
while toc < 2
 synthesizedAudio = osc();
 deviceWriter(synthesizedAudio);
end

Synthesize MIDI Messages
To play an array of midimsg objects with appropriate timing, create a loop.

First, create an array of midimsg objects and cache the note on and note off times to the
variable, eventTimes.

msgs = [midimsg('Note',channel,60,64,0.5,0), ...
 midimsg('Note',channel,62,64,0.5,.75), ...
 midimsg('Note',channel,57,40,0.5,1.5), ...
 midimsg('Note',channel,60,50,1,3)];
eventTimes = [msgs.Timestamp];

To mimic receiving notes in real time, create a for-loop that uses the eventTimes
variable and tic and toc to play notes according to the MIDI message timestamps.
Release your audio device after the loop is complete.

 Design and Play a MIDI Synthesizer

4-3

i = 1;
tic
while toc < max(eventTimes)
 if toc > eventTimes(i)
 msg = msgs(i);
 i = i+1;

 if msg.Velocity~= 0
 osc.Frequency = 440 * 2^((msg.Note-69)/12);
 osc.Amplitude = msg.Velocity/127;
 else
 osc.Amplitude = 0;
 end
 end
 deviceWriter(osc());
end
release(deviceWriter)

Synthesize Real-Time Note Messages from MIDI Device
To receive and synthesize note messages in real time, create an interface to a MIDI
device. The simplesynth example function:

• receives MIDI note messages from a specified MIDI device
• synthesizes an audio signal
• plays them to your audio output device in real time

Save the simplesynth function to your current folder.

simplesynth

function simplesynth(midiDeviceName)

 midiInput = mididevice(midiDeviceName);
 osc = audioOscillator('square', 'Amplitude', 0);
 deviceWriter = audioDeviceWriter;
 deviceWriter.SupportVariableSizeInput = true;
 deviceWriter.BufferSize = 64; % small buffer keeps MIDI latency low

 while true
 msgs = midireceive(midiInput);
 for i = 1:numel(msgs)
 msg = msgs(i);

4 Design and Play a MIDI Synthesizer

4-4

 if isNoteOn(msg)
 osc.Frequency = note2freq(msg.Note);
 osc.Amplitude = msg.Velocity/127;
 elseif isNoteOff(msg)
 if msg.Note == msg.Note
 osc.Amplitude = 0;
 end
 end
 end
 deviceWriter(osc());
 end
end

function yes = isNoteOn(msg)
 yes = msg.Type == midimsgtype.NoteOn ...
 && msg.Velocity > 0;
end

function yes = isNoteOff(msg)
 yes = msg.Type == midimsgtype.NoteOff ...
 || (msg.Type == midimsgtype.NoteOn && msg.Velocity == 0);
end

function freq = note2freq(note)
 freqA = 440;
 noteA = 69;
 freq = freqA * 2.^((note-noteA)/12);
end

To query your system for your device name, use mididevinfo. To listen to your chosen
device, call the simplesynth function with the device name. This example uses an M-
Audio KeyRig 25 device, which registers with device name USB 02 on the machine used
in this example.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 input MMSystem 'USB O2'
 3 output MMSystem 'Microsoft GS Wavetable Synth'
 4 output MMSystem 'USB MIDI Interface '
 5 output MMSystem 'USB O2'

 Design and Play a MIDI Synthesizer

4-5

Call the simplesynth function with your device name. The simplesynth function
listens for note messages and plays them to your default audio output device. Play notes
on your MIDI device and listen to the synthesized audio.

simplesynth('USB 02')

Use Ctrl-C to end the connection.

See Also
Classes
mididevice | midimsg

Functions
mididevinfo | midireceive | midisend

External Websites
• https://www.midi.org

4 Design and Play a MIDI Synthesizer

4-6

https://www.midi.org

MIDI Device Interface

5

MIDI Device Interface

MIDI
This tutorial introduces the Musical Instrument Digital Interface (MIDI) protocol and how
you can use Audio Toolbox to interact with MIDI devices. The tools described here enable
you to send and receive all MIDI messages as described by the MIDI protocol. If you are
interested only in sending and receiving Control Change messages with a MIDI control
surface, see “MIDI Control Surface Interface” on page 8-2. If you are interested in
using MIDI to control your audio plugins, see “MIDI Control for Audio Plugins” on page 7-
2. To learn more about MIDI in general, consult The MIDI Manufacturers Association.

MIDI is a technical standard for communication between electronic instruments,
computers, and related devices. MIDI carries event messages specific to audio signals,
such as pitch and velocity, as well as control signals for parameters and clock signals to
synchronize tempo.

MIDI Devices
A MIDI device is any device capable of sending or receiving MIDI messages. MIDI devices
have input ports, output ports, or both. The MIDI protocol defines messages as
unidirectional. A MIDI device can be real-world or virtual.

Audio Toolbox enables you to create an interface to a MIDI device using mididevice. To
create a MIDI interface to a specific device, use mididevinfo to query your system for
available devices. Then create a mididevice object by specifying a MIDI device by name
or ID.

mididevinfo

MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

device = mididevice('USB MIDI Interface ')

device =

5 MIDI Device Interface

5-2

https://www.midi.org

 mididevice connected to
 Input: 'USB MIDI Interface ' (1)
 Output: 'USB MIDI Interface ' (3)

You can specify a mididevice object to listen for input messages, send output messages,
or both. In this example, the mididevice object receives MIDI messages at the input
port named 'USB MIDI Interface ', and sends MIDI messages from the output port
named 'USB MIDI Interface '.

MIDI Messages
A MIDI message contains information that describes an audio-related action. For
example, when you press a key on a keyboard, the corresponding MIDI message contains
3 bytes:

1 The first byte describes the kind of action and the channel. The first byte is referred
to as the Status Byte.

2 The second byte describes which key is pressed. The second byte is referred to as a
Data Byte.

3 The third byte describes how hard the key is played. The third byte is also a Data
Byte.

This message is a Note On message. Note On is referred to as the message name,
command, or type.

 MIDI Device Interface

5-3

In MATLAB, a MIDI message is packaged as a midimsg object and can be manipulated as
scalars or arrays. To create a MIDI message, call midimsg with a message type and then
specify the required parameters for the specific message type. For example, to create a
note on message, specify the midimsg Type as 'NoteOn' and then specify the required
inputs: channel, note, and velocity.

channel = 1;
note = 60;
velocity = 64;
msg = midimsg('NoteOn',channel,note,velocity)

msg =

 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 0 [90 3C 40]

For convenience, midimsg displays the message type, channel, additional parameters,
timestamp, and the constructed message in hexadecimal form. Hexadecimal is the
preferred form because it has a straightforward interpretation:

Sending and Receiving MIDI Messages

To send and receive MIDI messages, use the mididevice object functions midisend and
midireceive. When you create a mididevice object, it begins receiving data at its
input and placing it in a buffer.

5 MIDI Device Interface

5-4

To retrieve MIDI messages from the buffer, call midireceive.

receivedMessages = midireceive(device)

receivedMessages =

 MIDI message:
 NoteOn Channel: 1 Note: 36 Velocity: 64 Timestamp: 15861.9 [90 24 40]
 NoteOn Channel: 1 Note: 36 Velocity: 0 Timestamp: 15862.1 [90 24 00]

The MIDI messages are returned as an array of midimsg objects. In this example, a MIDI
keyboard key is pressed.

To send MIDI messages to a MIDI device, call midisend.

midisend(device,msg)

MIDI Message Types

The type of MIDI message you create is defined as a character vector or string. To create
a MIDI message, specify it by its type and the required property values. For example,
create a Channel Pressure MIDI message by entering the following at the command
prompt:

channelPressureMessage = midimsg('ChannelPressure',1,20)

channelPressureMessage =

 MIDI message:
 ChannelPressure Channel: 1 ChannelPressure: 20 Timestamp: 0 [D0 14]

After you create a MIDI message, you can modify the properties, but you cannot modify
the type.

channelPressureMessage.ChannelPressure = 37

channelPressureMessage =

 MIDI message:
 ChannelPressure Channel: 1 ChannelPressure: 37 Timestamp: 0 [D0 25]

The table summarizes valid MIDI message types.

 MIDI Device Interface

5-5

5 MIDI Device Interface

5-6

The Audio Toolbox provides convenience syntaxes to create multiple MIDI messages used
in sequence and to create arrays of MIDI messages. See midimsg for a complete list of
syntaxes.

MIDI Message Timing

The MIDI protocol does not define message timing and assumes that messages are acted
on immediately. Many applications require timing information for queuing and batch
processing. For convenience, the Audio Toolbox packages timing information with MIDI
messages into a single midimsg object. All midimsg objects have a Timestamp property,
which is set during creation as an optional last argument or after creation. The default
Timestamp is zero.

The interpretation of the Timestamp property depends on how a MIDI message is
created and used:

• When receiving MIDI messages using midireceive, the underlying infrastructure
assigns a timestamp when receiving MIDI messages. Conceptually, the timing clock
starts when a mididevice object is created and attached as a listener to a given MIDI
input port. If another mididevice is attached to the same input port, it receives
timestamps from the same timing clock as the first object.

• When sending MIDI messages using midisend, timestamps are interpreted as when
to send the message.

If there have been no recent calls to midisend, then midisend interprets timestamps
as relative to the current real-world time. A message with a timestamp of zero is sent
immediately. If there has been a recent call to midisend, then midisend interprets
timestamps as relative to the largest timestamp of the last call to midisend. The
timestamp clock for midisend is specific to the MIDI output port that mididevice is
connected to.

Consider a pair of MIDI messages that turn a note on and off. The messages specify
that the note starts after one second and is sustained for one second.

Create Note On and Note Off messages.

 MIDI Device Interface

5-7

OnMsg = midimsg('NoteOn',1,59,64);
OffMsg = midimsg('NoteOn',1,59,0);

To send on and off messages using a single call to midisend, specify the timestamps
of the messages relative to the same start time.

OnMsg.Timestamp = 1;
OffMsg.Timestamp = 2;
midisend(device,[OnMsg;OffMsg]))

To send the Note Off message separately, specify the timestamp of the Note Off
message relative to the largest timestamp of the previous call to midisend.

OnMsg.Timestamp = 1;
OffMsg.Timestamp = 1;
midisend(device,OnMsg)
midisend(device,OffMsg)

5 MIDI Device Interface

5-8

The "start" time, or reference time, for midisend is the max between the absolute
time and the largest timestamp in the last call to midisend. For example, consider
that x, the arbitrary start time, is equal to the current absolute time. If there is a 1.5-
second pause between sending the note on and note off messages, the resulting note
duration is 1.5 seconds.

OnMsg.Timestamp = 1;
OffMsg.Timestamp = 1;
midisend(device,OnMsg)
pause(1.5)
midisend(device,OffMsg)

Usually, MIDI messages are sent faster than or at real-time speeds so there is no need
to track the absolute time.

 MIDI Device Interface

5-9

For live performances or to enable interrupts in a MIDI stream, you can set
timestamps to zero and then call midisend at appropriate real-world time intervals.
Depending on your use case, you can divide your MIDI stream into small repeatable
time chunks.

See Also
Classes
mididevice | midimsg

Functions
mididevinfo | midireceive | midisend

Related Examples
• “Design and Play a MIDI Synthesizer” on page 4-2

External Websites
• MIDI Manufacturers Association
• Summary of MIDI Messages

5 MIDI Device Interface

5-10

https://www.midi.org
https://www.midi.org/specifications/item/table-1-summary-of-midi-message

Dynamic Range Control

6

Dynamic Range Control
Dynamic range control is the adaptive adjustment of the dynamic range of a signal. The
dynamic range of a signal is the logarithmic ratio of maximum to minimum signal
amplitude specified in dB.

You can use dynamic range control to:

• Match an audio signal level to its environment
• Protect AD converters from overload
• Optimize information
• Suppress low-level noise

Types of dynamic range control include:

• Dynamic range compressor –– Attenuates the volume of loud sounds that cross a given
threshold. They are often used in recording systems to protect hardware and to
increase overall loudness.

• Dynamic range limiter –– A type of compressor that brickwalls sound above a given
threshold.

• Dynamic range expander –– Attenuates the volume of quiet sounds below a given
threshold. They are often used to make quiet sounds even quieter.

• Noise gate –– A type of expander that brickwalls sound below a given threshold.

This tutorial shows how to implement dynamic range control systems using the
compressor, expander, limiter, and noiseGate System objects from Audio Toolbox.
The tutorial also provides an illustrated example of dynamic range limiting at various
stages of a dynamic range limiting system.

The diagram depicts a general dynamic range control system.

6 Dynamic Range Control

6-2

In a dynamic range control system, a gain signal is calculated in a sidechain and then
applied to the input audio signal. The sidechain consists of:

• Linear to dB conversion:x xdB

• Gain computation, by passing the dB signal through a static characteristic equation,
and then taking the difference: gc = xsc− xdB

• Gain smoothing over time: gc gs

• Addition of make-up gain (for compressors and limiters only): gs gm

• dB to linear conversion: gm glin

• Application of the calculated gain signal to the original audio signal: y = glin × x

Linear to dB Conversion
The gain signal used in dynamic range control is processed on a dB scale for all dynamic
range controllers. There is no reference for the dB output; it is a straight conversion:
xdB = 20log10(x). You might need to adjust the output of a dynamic range control system
to the range of your system.

Gain Computer
The gain computer provides the first rough estimate of a gain signal for dynamic range
control. The principal component of the gain computer is the static characteristic. Each
type of dynamic range control has a different static characteristic with different tunable
properties:

• Threshold –– All static characteristics have a threshold. On one side of the threshold,
the input is given to the output with no modification. On the other side of the
threshold, compression, expansion, brickwall limiting, or brickwall gating is applied.

• Ratio –– Expanders and compressors enable you to adjust the input-to-output ratio of
the static characteristic above or below a given threshold.

• KneeWidth –– Expanders, compressors, and limiters enable you to adjust the knee
width of the static characteristic. The knee of a static characteristic is centered at the
threshold. An increase in knee width creates a smoother transition around the
threshold. A knee width of zero provides no smoothing and is known as a hard knee. A
knee width greater than zero is known as a soft knee.

 Dynamic Range Control

6-3

In these static characteristic plots, the expander, limiter, and compressor each have a
10 dB knee width.

6 Dynamic Range Control

6-4

Gain Smoothing
All dynamic range controllers provide gain smoothing over time. Gain smoothing
diminishes sharp jumps in the applied gain, which can result in artifacts and an unnatural
sound. You can conceptualize gain smoothing as the addition of impedance to your gain
signal.

 Dynamic Range Control

6-5

The expander and noiseGate objects have the same smoothing equation, because a
noise gate is a type of expander. The limiter and compressor objects have the same
smoothing equation, because a limiter is a type of compressor.

The type of gain smoothing is specified by a combination of attack time, release time, and
hold time coefficients. Attack time and release time correspond to the time it takes the
gain signal to go from 10% to 90% of its final value. Hold time is a delay period before
gain is applied. See the algorithms of individual dynamic range controller pages for more
detailed explanations.

Smoothing Equations
expander and noiseGate

gs[n] =

αAgs[n− 1] + (1 − αA)gc[n]
gs[n− 1]

αRgs[n− 1] + (1 − αR)gc[n]
gs[n− 1]

if CA > k & gc[n] ≤ gs[n− 1]
if CA ≤ k

if CR > k & gc[n] > gs[n− 1]
if CR ≤ k

• αA and αR are determined by the sample rate and specified attack and release time:

αA = exp −log(9)
Fs × TA

, αR = exp −log(9)
Fs × TR

• k is the specified hold time in samples.
• CA and CR are hold counters for attack and release, respectively.

compressor and limiter

gs[n] =
αAgs[n− 1] + (1 − αA)gc[n] if gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1 − αR)gc[n] if gc[n] > gs[n− 1]

• αA and αR are determined by the sample rate and specified attack and release time:

αA = exp −log(9)
Fs × TA

, αR = exp −log(9)
Fs × TR

Gain Smoothing Example

Examine a trivial case of dynamic range compression for a two-step input signal. In this
example, the compressor has a threshold of –10 dB, a compression ratio of 5, and a hard
knee.

6 Dynamic Range Control

6-6

Several variations of gain smoothing are shown. On the top, a smoothed gain curve is
shown for different attack time values, with release time set to zero seconds. In the
middle, release time is varied and attack time is held constant at zero seconds. On the
bottom, both attack and release time are specified by nonzero values.

 Dynamic Range Control

6-7

Make-Up Gain
Make-up gain applies for compressors and limiters, where higher dB portions of a signal
are attenuated or brickwalled. The dB reduction can significantly reduce total signal
power. In these cases, make-up gain is applied after gain smoothing to increase the signal
power. In Audio Toolbox, you can specify a set amount of make-up gain or specify the
make-up gain mode as 'auto'.

The 'auto' make-up gain ensures that a 0 dB input results in a 0 dB output. For
example, assume a static characteristic of a compressor with a soft knee:

6 Dynamic Range Control

6-8

xsc(xdB) =

xdB xdB < T − W
2

xdB +
1
R − 1 xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T +
xdB− T

R xdB > T + W
2

T is the threshold, W is the knee width, and R is the compression ratio. The calculated
auto make-up gain is the negative of the static characteristic equation evaluated at 0 dB:

MAKE‐UP GAIN = − xsc(0) =

0 W
2 < T

−
1
R − 1 T − W

2
2

2W −W
2 ≤ T ≤ W

2

−T + T
R −W

2 > T

dB to Linear Conversion
Once the gain signal is determined in dB, it is transferred to the linear domain:

glin = 10
gm 20.

Apply Calculated Gain
The final step in a dynamic control system is to apply the calculated gain by multiplication
in the linear domain.

Example: Dynamic Range Limiter
The audio signal described in this example is a 0.5 second interval of a drum track. The
limiter properties are:

• Threshold = –15 dB
• Knee width = 0 (hard knee)
• Attack time = 0.004 seconds

 Dynamic Range Control

6-9

• Release time = 0.1 seconds
• Make-up gain = 1 dB

To create a limiter System object with these properties, at the MATLAB command
prompt, enter:

dRL = limiter('Threshold',-15,...
 'KneeWidth',0,...
 'AttackTime',0.004,...
 'ReleaseTime',0.1,...
 'MakeUpGainMode','property',...
 'MakeUpGain',1);

This example provides a visual walkthrough of the various stages of the dynamic range
limiter system.

6 Dynamic Range Control

6-10

Linear to dB Conversion

The input signal is converted to a dB scale element by element.

Gain Computer

The static characteristic brickwall limits the dB signal at –15 dB. To determine the dB
gain that results in this limiting, the gain computer subtracts the original dB signal from
the dB signal processed by the static characteristic.

Gain Smoothing

The relatively short attack time specification results in a steep curve when the applied
gain is suddenly increased. The relatively long release time results in a gradual
diminishing of the applied gain.

 Dynamic Range Control

6-11

Make-Up Gain

Assume a limiter with a 1 dB make-up gain value. The make-up gain is added to the
smoothed gain signal.

dB to Linear Conversion

The gain in dB is converted to a linear scale element by element.

6 Dynamic Range Control

6-12

Apply Calculated Gain

The original signal is multiplied by the linear gain.

References
[1] Zolzer, Udo. "Dynamic Range Control." Digital Audio Signal Processing. 2nd ed.

Chichester, UK: Wiley, 2008.

[2] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range
Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering
Society. Vol. 60, Issue 6, 2012, pp. 399–408.

See Also
Blocks
Compressor | Expander | Limiter | Noise Gate

 See Also

6-13

System Objects
compressor | expander | limiter | noiseGate

More About
• “Dynamic Range Compression Using Overlap-Add Reconstruction”

6 Dynamic Range Control

6-14

MIDI Control for Audio Plugins

7

MIDI Control for Audio Plugins
MIDI and Plugins
MIDI control surfaces are commonly used in conjunction with audio plugins in digital
audio workstation (DAW) environments. Synchronizing MIDI controls with plugin
parameters provides a tangible interface for audio processing and is an efficient approach
to parameter tuning.

In the MATLAB environment, audio plugins are defined as any valid class that derives
from the audioPlugin base class or the audioPluginSource base class. For more
information about how audio plugins are defined in the MATLAB environment, see
“Design an Audio Plugin”.

Use MIDI with MATLAB Plugins
The Audio Toolbox product provides three functions for enabling the interface between
MIDI control surfaces and audio plugins:

• configureMIDI –– Configure MIDI connections between audio plugin and MIDI
controller.

• getMIDIConnections –– Get MIDI connections of audio plugin.
• disconnectMIDI –– Disconnect MIDI controls from audio plugin.

These functions combine the abilities of general MIDI functions into a streamlined and
user-friendly interface suited to audio plugins in MATLAB. For a tutorial on the general
functions and the MIDI protocol, see “MIDI Control Surface Interface” on page 8-2.

This tutorial walks you through the MIDI functions for audio plugins in MATLAB.

1. Connect MIDI Device and Then Start MATLAB

Before starting MATLAB, connect your MIDI control surface to your computer and turn it
on. For connection instructions, see the instructions for your MIDI device. If you start

7 MIDI Control for Audio Plugins

7-2

MATLAB before connecting your device, MATLAB might not recognize your device when
you connect it. To correct the problem, restart MATLAB with the device already
connected.

2. Establish MIDI Connections

Use configureMIDI to establish MIDI connections between your default MIDI device
and an audio plugin. You can use configureMIDI programmatically, or you can open a
user interface (UI) to guide you through the process. The configureMIDI UI reads from
your audio plugin and populates a drop-down list of tunable plugin properties. You are
then prompted to move individual controls on your MIDI control surface to associate the
position of each control with the normalized value of each property you select. For
example, create an object of audiopluginexample.PitchShifter and then call
configureMIDI with the object as the argument:

ctrlPitch = audiopluginexample.PitchShifter;
configureMIDI(ctrlPitch)

The Synchronize to MIDI controls dialog box opens with the tunable properties of your
plugin automatically populated. When you operate a MIDI control, its identification is
entered into the Operate MIDI control to synchronize box. After you synchronize
tunable properties with MIDI controls, click OK to complete the configuration. If your
MIDI control surface is bidirectional, it automatically shifts the position of the
synchronized controls to the initial property values specified by your plugin.

To open a MATLAB function with the programmatic equivalent of your actions in the UI,
select the Generate MATLAB Code check box. Saving this function enables you to reuse
your settings and quickly establish the configuration in future sessions.

 MIDI Control for Audio Plugins

7-3

3. Tune Plugin Parameters Using MIDI

After you establish connections between plugin properties and MIDI controls, you can
tune the properties in real time using your MIDI control surface.

Audio Toolbox provides an all-in-one app for running and testing your audio plugin. The
test bench mimics how a DAW interacts with plugins.

Open the Audio Test Bench for your ctrlPitch object.

audioTestBench(ctrlPitch)

When you adjust the controls on your MIDI surface, the corresponding plugin parameter

sliders move. Click to run the plugin. Move the controls on your MIDI surface to hear
the effect of tuning the plugin parameters.

7 MIDI Control for Audio Plugins

7-4

To establish MIDI connections and modify existing ones, click the Synchronize to MIDI

Controls button to open a configureMIDI UI.

Alternatively, you can use the MIDI connections you established in a script or function.
For example, run the following code and move your synchronized MIDI controls to hear
the pitch-shifting effect:

fileReader = dsp.AudioFileReader(...
 'Filename','Counting-16-44p1-mono-15secs.wav');
deviceWriter = audioDeviceWriter;

% Audio stream loop
while ~isDone(fileReader)
 input = fileReader();
 output = ctrlPitch(input);
 deviceWriter(output);
 drawnow limitrate; % Process callback immediately
end

release(fileReader);
release(deviceWriter);

4. Get Current MIDI Connections

To query the MIDI connections established with your audio plugin, use the
getMIDIConnections function. getMIDIConnections returns a structure with fields
corresponding to the tunable properties of your plugin. The corresponding values are
nested structures containing information about the mapping between your plugin
property and the specified MIDI control.

connectionInfo = getMIDIConnections(ctrlPitch)

connectionInfo =

 struct with fields:

 PitchShift: [1×1 struct]
 Overlap: [1×1 struct]

connectionInfo.PitchShift

ans =

 struct with fields:

 MIDI Control for Audio Plugins

7-5

 Law: 'int'
 Min: -12
 Max: 12
 MIDIControl: 'control 1081 on 'BCF2000''

5. Disconnect MIDI Surface

As a best practice, release external devices such as MIDI control surfaces when you are
done.

disconnectMIDI(ctrlPitch)

See Also
Apps
Audio Test Bench

Classes
audioPlugin | audioPluginSource

Functions
configureMIDI | disconnectMIDI | getMIDIConnections

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?”
• “MIDI Control Surface Interface” on page 8-2
• “Design an Audio Plugin”
• “Host External Audio Plugins”

External Websites
• https://www.midi.org

7 MIDI Control for Audio Plugins

7-6

https://www.midi.org

MIDI Control Surface Interface

8

MIDI Control Surface Interface
In this section...
“About MIDI” on page 8-2
“MIDI Control Surfaces” on page 8-2
“Use MIDI Control Surfaces with MATLAB and Simulink” on page 8-3

About MIDI
Musical Instrument Digital Interface (MIDI) was originally developed to interconnect
electronic musical instruments. This interface is flexible and has uses in applications far
beyond musical instruments. Its simple unidirectional messaging protocol supports many
different kinds of messaging. One kind of MIDI message is the Control Change message,
which is used to communicate changes in controls, such as knobs, sliders, and buttons.

MIDI Control Surfaces
A MIDI control surface is a device with controls that sends MIDI Control Change
messages when you turn a knob, move a slider, or push a button on its surface. Each
Control Change message indicates which control changed and what its new position is.

Because the MIDI messaging protocol is unidirectional, determining a particular
controller position requires that the receiver listen for Control Change messages that the
controller sends. The protocol does not support querying the MIDI controller for its
position.

The simplest MIDI control surfaces are unidirectional: They send MIDI Control Change
messages but do not receive them. More sophisticated control surfaces are bidirectional:
They can both send and receive Control Change messages. These control surfaces have

8 MIDI Control Surface Interface

8-2

knobs or sliders that can operate automatically. For example, a control surface can have
motorized sliders or knobs. When it receives a Control Change message, the appropriate
control moves to the position in the message.

Use MIDI Control Surfaces with MATLAB and Simulink
Audio Toolbox enables you to use MIDI control surfaces to control MATLAB programs and
Simulink® models by providing the capability to listen to Control Change messages. The
toolbox also provides a limited capability to send Control Change messages to support
synchronizing MIDI controls. This tutorial covers general MIDI functions. For functions
specific to audio plugins in MATLAB, see “MIDI Control for Audio Plugins” on page 7-2.
The Audio Toolbox general interface to MIDI control surfaces includes five functions and
one block:

• midiid –– Interactively identify MIDI control.
• midicontrols –– Open group of MIDI controls for reading.
• midiread –– Return most recent value of MIDI controls.
• midisync –– Send values to MIDI controls for synchronization.
• midicallback –– Call function handle when MIDI controls change value.
• MIDI Controls (block) –– Output values from controls on MIDI control surface. The

MIDI Controls block combines functionality of the general MIDI functions into one
block for the Simulink environment.

This diagram shows a typical workflow involving general MIDI functions in MATLAB. For
the Simulink environment, follow steps 1 and 2, and then use the MIDI Controls block for
a user-interface guided workflow.

 MIDI Control Surface Interface

8-3

1. Connect MIDI Device and Then Start MATLAB

Before starting MATLAB, connect your MIDI control surface to your computer and turn it
on. For connection instructions, see the instructions for your MIDI device. If you start
MATLAB before connecting your device, MATLAB might not recognize your device when
you connect it. To correct the problem, restart MATLAB with the device already
connected.

2. Determine Device Name and Control Numbers

Use the midiid function to determine the device name and control numbers of your MIDI
control surface. After you call midiid, it continues to listen until it receives a Control
Change message. When it receives a Control Change message, it returns the control
number associated with the MIDI controller number that you manipulated, and optionally
returns the device name of your MIDI control surface. The manufacturer and host
operating system determine the device name. See “Control Numbers” on page 8-10 for
an explanation of how MATLAB calculates the control number.

To set a default device name, see “Set Default MIDI Device” on page 8-9.

8 MIDI Control Surface Interface

8-4

View Example

Call midiid with two outputs and then move a controller on your MIDI device. midiid
returns the control number specific to the controller you moved and the device name of
the MIDI control surface.

[controlNumber,deviceName] = midiid;

3. Create Listener for Control Change Messages

Use the midicontrols function to create an object that listens for Control Change
messages and caches the most recent values corresponding to specified controllers. When
you create a midicontrols object, you specify a MIDI control surface by its device name
and specific controllers on the surface by their associated control numbers. Because the
midicontrols object cannot query the MIDI control surface for initial values, consider
setting initial values when creating the object.

View Example

Identify two control numbers on your MIDI control surface. Choose initial control values
for the controls you identified. Create a midicontrols object that listens to Control
Change messages that arrive from the controllers you identified on the device you
identified. When you create your midicontrols object, also specify initial control values.
These initial control values work as default values until a Control Change message is
received.
controlNum1 = midiid;
[controlNum2,deviceName] = midiid;
initialControlValues = [0.1,0.9];

midicontrolsObject = midicontrols([controlNum1,controlNum2], ...
 initialControlValues, ...
 'MIDIDevice',deviceName);

 MIDI Control Surface Interface

8-5

4. Get Current Control Values

Use the midiread function to query your midicontrols object for current control
values. midiread returns a matrix with values corresponding to all controllers the
midicontrols object is listening to. Generally, you want to place midiread in an audio
stream loop for continuous updating.

View Example

Place midiread in an audio stream loop to return the current control value of a specified
controller. Use the control value to apply gain to an audio signal.
[controlNumber, deviceName] = midiid;
initialControlValue = 1;
midicontrolsObject = midicontrols(controlNumber,initialControlValue,'MIDIDevice',deviceName);

% Create a dsp.AudioFileReader System object™ with default settings. Create
% an audioDeviceWriter System object and specify the sample rate.
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

% In an audio stream loop, read an audio signal frame from the file, apply
% gain specified by the control on your MIDI device, and then write the
% frame to your audio output device. By default, the control value returned
% by midiread is normalized.
while ~isDone(fileReader)
 audioData = step(fileReader);

 controlValue = midiread(midicontrolsObject);

 gain = controlValue*2;
 audioDataWithGain = audioData*gain;

 play(deviceWriter,audioDataWithGain);
end

% Close the input file and release your output device.

8 MIDI Control Surface Interface

8-6

release(fileReader);
release(deviceWriter);

5. Synchronize Bidirectional MIDI Control Surfaces

You can use midisync to send Control Change messages to your MIDI control surface. If
the MIDI control surface is bidirectional, it adjusts the specified controllers. One
important use of midisync is to set the controller positions on your MIDI control surface
to initial values.

View Example

In this example, you initialize a controller on your MIDI control surface to a specified
position. Calling midisync(midicontrolsObject) sends a Control Change message to
your MIDI control surface, using the initial control values specified when you created the
midicontrols object.
[controlNumber,deviceName] = midiid;
initialControlValue = 0.5;
midicontrolsObject = midicontrols(controlNumber,initialControlValue,'MIDIDevice',deviceName);

midisync(midicontrolsObject);

Another important use of midisync is to update your MIDI control surface if control
values are adjusted in an audio stream loop. In this case, you call midisync with both
your midicontrols object and the updated control values.

View Example

In this example, you check the normalized output volume in an audio stream loop. If the
volume is above a given threshold, midisync is called and the MIDI controller that
controls the applied gain is reduced.

 MIDI Control Surface Interface

8-7

[controlNumber, deviceName] = midiid;
initialControlValue = 0.5;
midicontrolsObject = midicontrols(controlNumber,initialControlValue);
fileReader = dsp.AudioFileReader('Ambiance-16-44p1-mono-12secs.wav');
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

% Synchronize specified initial value with the MIDI control surface.
midisync(midicontrolsObject);

while ~isDone(fileReader)
 audioData = step(fileReader);
 controlValue = midiread(midicontrolsObject);
 gain = controlValue*2;
 audioDataWithGain = audioData*gain;

 % Check if max output is above a given threshold.
 if max(audioDataWithGain) > 0.7

 % Force new control value to be nonnegative.
 newControlValue = max(0,controlValue-0.5);

 % Send a Control Change message to the MIDI control surface.
 midisync(midicontrolsObject,newControlValue)
 end

 play(deviceWriter,audioDataWithGain);
end

release(fileReader);
release(deviceWriter);

midisync is also a powerful tool in systems that also involve user interfaces (UIs), so that
when one control is changed, the other control tracks it. Typically, you implement such
tracking by setting callback functions on both the midicontrols object (using
midicallback) and the UI control. The callback for the midicontrols object sends
new values to the UI control. The UI uses midisync to send new values to the
midicontrols object and MIDI control surface. See midisync for examples.

Alternative to Stream Processing

You can use midicallback as an alternative to placing midiread in an audio stream
loop. If a midicontrols object receives a Control Change message, midicallback
automatically calls a specified function handle. The callback function typically calls

8 MIDI Control Surface Interface

8-8

midiread to determine the new value of the MIDI controls. You can use this callback
when you want a MIDI controller to trigger an action, such as updating a UI. Using this
approach prevents having a MATLAB program continuously running in the command
window.

Set Default MIDI Device

You can set the default MIDI device in the MATLAB environment by using the setpref
function. Use midiid to determine the name of the device, and then use setpref to set
the preference.

[~,deviceName] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

deviceName =

BCF2000

setpref('midi','DefaultDevice',deviceName)

This preference persists across MATLAB sessions, so you only have to set it once, unless
you want to change devices.

If you do not set this preference, MATLAB and the host operating system choose a device
for you. However, such autoselection can cause unpredictable results because many
computers have "virtual" (software) MIDI devices installed that you might not be aware
of. For predictable behavior, set the preference.

 MIDI Control Surface Interface

8-9

Control Numbers

MATLAB defines control numbers as (MIDI channel number) × 1000 + (MIDI controller
number).

• MIDI channel number is the transmission channel that your device uses to send
messages. This value is in the range 1–16.

• MIDI controller number is a number assigned to an individual control on your MIDI
device. This value is in the range 1–127.

Your MIDI device determines the values of MIDI channel number and MIDI controller
number.

See Also
Blocks
MIDI Controls

Functions
midicallback | midicontrols | midiid | midiread | midisync

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?”
• “Real-Time Audio in MATLAB”
• “MIDI Device Interface” on page 5-2
• “MIDI Control for Audio Plugins” on page 7-2

External Websites
• https://www.midi.org

8 MIDI Control Surface Interface

8-10

https://www.midi.org

Use the Audio Test Bench

9

Audio Test Bench Walkthrough
In this tutorial, explore key functionality of the Audio Test Bench. The Audio Test
Bench app enables you to debug, visualize, and configure audio plugins.

Choose Object Under Test
1 To open the Audio Test Bench, at the MATLAB command prompt, enter:

audioTestBench
2 In the Object Under Test box, enter audiopluginexample.Strobe and press

Enter. The Audio Test Bench automatically displays the tunable parameters of the
audiopluginexample.Strobe audio plugin.

9 Use the Audio Test Bench

9-2

The mapping between the tunable parameters of your object and the UI widgets on
the Audio Test Bench is determined by audioPluginInterface and
audioPluginParameter in the class definition of your object.

3 In the Object Under Test box, enter
audiopluginexample.DampedVolumeController and press Enter. The Audio
Test Bench automatically displays the tunable parameters of the
audiopluginexample.DampedVolumeController audio plugin.

Run Audio Test Bench

To run the Audio Test Bench for your plugin with default settings, click . Move the
sliders to modify the Gain (dB) and Transition Delay (s) parameters while streaming.

 Audio Test Bench Walkthrough

9-3

To stop the audio stream loop, click . The MATLAB command line and objects used by
the test bench are now released.

To reset internal states of your audio plugin and return the sliders to their initial

positions, click .

Click to run the Audio Test Bench again.

Debug Source Code of Audio Plugin

To pause the Audio Test Bench, click .

To open the source file of your audio plugin, click .

9 Use the Audio Test Bench

9-4

You can inspect the source code of your audio plugin, set breakpoints on it, and modify

the code. Set a breakpoint at line 63 and then click on the Audio Test Bench.

The Audio Test Bench runs your plugin until it reaches the breakpoint. To reach the
breakpoint, move the Transition Delay (s) slider. To quit debugging, remove the
breakpoint. In the MATLAB editor, click Quit Debugging.

 Audio Test Bench Walkthrough

9-5

Open Scopes
To open a time scope to visualize the time-domain input and output for your audio plugin,

click . To open a spectrum analyzer to visualize the frequency-domain input and

output, click .

To release objects and stop the audio stream loop, click .

Configure Input to Audio Test Bench
The Input list contains these options:

9 Use the Audio Test Bench

9-6

• Audio File Reader –– dsp.AudioFileReader
• Audio Device Reader –– audioDeviceReader
• Audio Oscillator –– audioOscillator
• Wavetable Synthesizer –– wavetableSynthesizer
• Chirp Signal –– dsp.Chirp
• Colored Noise –– dsp.ColoredNoise

1 Select Audio File Reader.
2

Click to open a dialog for Audio File Reader configuration.

You can enter any file name included on the MATLAB path. To specify a file that is not
on the MATLAB path, specify the full file path.

3 In the Audio file box, enter: RockDrums-44p1-stereo-11secs.mp3

Press Enter, and then exit the Audio File Reader configuration dialog. To run the

audio test bench with your new input, click .

 Audio Test Bench Walkthrough

9-7

To release your output object and stop the audio stream loop, click .

Configure Output from Audio Test Bench
The Output list contains these options:

• Audio Device Writer –– audioDeviceWriter
• Audio File Writer –– dsp.AudioFileWriter
• Both –– audioDeviceWriter and dsp.AudioFileWriter
• None –– The audio signal is not routed to a file or device. Use this option if you are

only interested in using the visualization and tuning capabilities of the test bench.

1 Choose to output to device and file by selecting Both from the Output menu.
2 To open a dialog for Audio Device Writer and Audio File Writer

configuration, click .

9 Use the Audio Test Bench

9-8

Call Custom Visualization of Audio Plugin

If your audio plugin has a custom visualization method, the button appears on the
Audio Test Bench. In the Object Under Test box, enter
audiopluginexample.VarSlopeBandpassFilter and press Enter. To open the
custom visualization of audiopluginexample.VarSlopeBandpassFilter, click .
The custom visualization plots the frequency response of the filter. Tune the plugin
parameters and observe the plot update in real time.

 Audio Test Bench Walkthrough

9-9

Custom visualizations are MATLAB-only features. Custom visualizations are not available
for generated plugins.

Synchronize Plugin Property with MIDI Control
If you have a MIDI device connected to your computer, you can synchronize plugin

properties with MIDI controls. To open a MIDI configuration UI, click . Synchronize
the LowCutoff and HighCutoff properties with MIDI controls you choose. Click OK.

See configureMIDI for more information.

9 Use the Audio Test Bench

9-10

Play the Audio and Save the Output File

To run your audio plugin, click . Adjust your plugin properties in real time using your
synchronized MIDI controls and sliders. Your processed audio file is saved to the current
folder.

Validate and Generate Audio Plugin

To open the validation and generation dialog box, click .

You can validate only, or validate and generate your MATLAB audio plugin code in VST 2
plugin format. The Generate a 32-bit audio plugin check box is available only on win64
machines. See validateAudioPlugin and generateAudioPlugin for more
information.

 Audio Test Bench Walkthrough

9-11

Generate MATLAB Script
To generate a MATLAB script that implements a test bench for your audio plugin, click

.

9 Use the Audio Test Bench

9-12

 Audio Test Bench Walkthrough

9-13

You can modify the code for complete control over the test bench environment, including
the ability to create processing chains by placing plugins in cascade.

See Also
Apps
Audio Test Bench

Functions
generateAudioPlugin | validateAudioPlugin

Classes
audioPlugin

More About
• “Design an Audio Plugin”
• “Audio Plugin Example Gallery” on page 10-2
• “Export a MATLAB Plugin to a DAW”

9 Use the Audio Test Bench

9-14

Audio Plugin Example Gallery

10

Audio Plugin Example Gallery
Use these Audio Toolbox plugin examples as building blocks in larger systems, as models
for design patterns, or as benchmarks for comparison. Search the plugin descriptions to
find an example that meets your needs.

Audio Effects

Filters

Gain Control

Spatial Audio

Communicate Between MATLAB and DAW

Music Information Retrieval

Speech Processing

Audio Plugin Examples
For a list of available audio plugins, see the online documentation.

See Also
Audio Test Bench | audioPlugin | audioPluginInterface |
audioPluginParameter | audioPluginSource

More About
• “Audio Test Bench Walkthrough” on page 9-2
• “Design an Audio Plugin”

10 Audio Plugin Example Gallery

10-2

Equalization

11

Equalization
Equalization (EQ) is the process of weighting the frequency spectrum of an audio signal.

You can use equalization to:

• Enhance audio recordings
• Analyze spectral content

Types of equalization include:

• Lowpass and highpass filters –– Attenuate high frequency and low frequency content,
respectively.

• Low-shelf and high-shelf equalizers –– Boost or cut frequencies equally above or below
a desired cutoff point.

• Parametric equalizers –– Selectively boost or cut frequency bands. Also known as
peaking filters.

• Graphic equalizers –– Selectively boost or cut octave or fractional octave frequency
bands. The bands have standards-based center frequencies. Graphic equalizers are a
special case of parametric equalizers.

This tutorial describes how Audio Toolbox implements the design functions:
designParamEQ, designShelvingEQ, and designVarSlopeFilter. The
multibandParametricEQ System object combines the filter design functions into a
multiband parametric equalizer. The graphicEQ System object combines the filter design
functions and the octaveFilter System object for standards-based graphic
equalization. For a tutorial focused on using the design functions in MATLAB, see
“Parametric Equalizer Design”.

Equalization Design Using Audio Toolbox

EQ Filter Design
Audio Toolbox design functions use the bilinear transform method of digital filter design
to determine your equalizer coefficients. In the bilinear transform method, you:

1 Choose an analog prototype.
2 Specify filter design parameters.

11 Equalization

11-2

3 Perform the bilinear transformation.

Analog Low-Shelf Prototype

Audio Toolbox uses the high-order parametric equalizer design presented in [1]. In this
design method, the analog prototype is taken to be a low-shelf Butterworth filter:

Ha(s) = gβ + s
β + s

r
∏

i = 1

L g2β2 + 2gsiβs + s2

β2 + 2siβs + s2

• L = Number of analog SOS sections

• N = Analog filter order

• r =
0 N even
1 N odd

• g = G1/N

• β = ΩB ×
G2− GB

2

GB
2 − 1

−1 N
= tan π Δω

2 ×
G2− GB

2

GB
2 − 1

−1 N
, where Δω is the

desired digital bandwidth

 Equalization

11-3

• si = sin 2i− 1 π
2N , i = 1, 2, ..., L

For parametric equalizers, the analog prototype is reduced by setting the bandwidth gain
to the square root of the peak gain (GB = sqrt(G)).

After the design parameters are specified, the analog prototype is transformed directly to
the desired digital equalizer by a bandpass bilinear transformation:

s =
1 − 2cos ω0 z−1 + z−2

1 − z−2

ω0 is the desired digital center frequency.

This transformation doubles the filter order. Every first-order analog section becomes a
second-order digital section. Every second-order analog section becomes a fourth-order
digital section. Audio Toolbox always calculates fourth-order digital sections, which
means that returning second-order sections requires the computation of roots, and is less
efficient.

Digital Coefficients

The digital transfer function is implemented as a cascade of second-order and fourth-
order sections.

H(z) =
b00 + b01z−1 + b02z−2

1 + a01z−1 + a02z−2

r
∏

i = 1

L bi0 + bi1z−1 + bi2z−2 + bi3z−3 + bi4z−4

1 + ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4

The coefficients are given by performing the bandpass bilinear transformation on the
analog prototype design.

11 Equalization

11-4

Second-Order Section Coefficients Fourth-Order Section Coefficients
D0 = β + 1
b00 = 1 + gβ /D0
b01 = − 2cos(ω0)/D0
b02 = 1 − gβ /D0
a01 = − 2cos(ω0)/D0
a02 = 1 − β /D0

Di = β2 + 2siβ + 1

bi0 = g2β2 + 2gsiβ + 1 /Di

bi1 = − 4c0 1 + gsiβ /Di

bi2 = 2 1 + 2cos2(ω0) − g2β2 /Di

bi3 = − 4c0 1 − gsiβ /Di

bi4 = g2β2− 2gsiβ + 1 /Di

ai1 = − 4c0 1 + siβ /Di

ai2 = 2 1 + 2cos2(ω0) − β2 /Di

ai3 = − 4cos(ω0) 1 − siβ /Di

ai4 = β2− 2siβ + 1 /Di

Biquadratic Case

In the biquadratic case, when N = 1, the coefficients reduce to:

D0 =
ΩB
G + 1

b00 = 1 + ΩB G /D0, b01 = − 2cos(ω0)/D0, b02 = 1 − ΩB G /D0

a01 = − 2cos(ω0)/D0, a02 = 1 −
ΩB
G /D0

Denormalizing the a00 coefficient, and making substitutions of A =sqrt(G), ΩB ≅ α yields
the familiar peaking EQ coefficients described in [2].

Orfanidis notes the approximate equivalence of ΩB and α in [1].

By using trigonometric identities,

ΩB = tan Δω
2 = sin ω0 sinh ln2

2 B ,

where B plays the role of an equivalent octave bandwidth.

 Equalization

11-5

Bristow-Johnson obtained an approximate solution for B in [4]:

B =
ω0

sinω0
× BW

Substituting the approximation for B into the ΩB equation yields the definition of α in [2]:

α = sin ω0 sinh ln2
2 ×

ω0
sinω0

× BW

Lowpass and Highpass Filter Design
Analog Low-Shelf Prototype

To design lowpass and highpass filters, Audio Toolbox uses a special case of the filter
design for parametric equalizers. In this design, the peak gain, G, is set to 0, and GB

2 is
set to 0.5 (–3 dB cutoff). The cutoff frequency of the lowpass filter corresponds to 1 – ΩB.
The cutoff frequency of the highpass filter corresponds to ΩB.

Digital Coefficients

The table summarizes the results of the bandpass bilinear transformation. The digital
center frequency, ω0, is set to π for lowpass filters and 0 for highpass filters.

11 Equalization

11-6

Second Order Section Coefficients Fourth Order Section Coefficients

D0 = 1 + tan π Δω
2

b00 = 1/D0
b01 = − 2cos ω0 /D0
b02 = 1/D0
a01 = − 2cos ω0 /D0

a02 = 1 − tan π Δω
2 /D0

Di = tan2 π Δω
2 + 2sitan π Δω

2 + 1

bi0 = 1/Di
bi1 = − 4cos ω0 /Di

bi2 = 2 1 + 2cos2 ω0 /Di

bi3 = − 4cos ω0 0/Di

bi4 = 1/Di

ai1 = − 4cos ω0 1 + sitan π Δω
2 /Di

ai2 = 2 1 + 2cos2 ω0 − tan2 π Δω
2 /Di

ai3 = − 4cos ω0 1 − sitan π Δω
2 /Di

ai4 = tan2 π Δω
2 − 2sitan π Δω

2 + 1 /Di

Shelving Filter Design
Analog Prototype

Audio Toolbox implements the shelving filter design presented in [2]. In this design, the
high-shelf and low-shelf analog prototypes are presented separately:

HL(s) = A
As2 + A Q s + 1
s2 + A Q s + A

HH(s) = A
s2 + A Q s + A
As2 + A Q s + 1

For compactness, the analog filters are presented with variables A and Q. You can convert
A and Q to available Audio Toolbox design parameters:

A = 10G/40

1
Q = A + 1 A 1 slope− 1 + 2

After you specify the design parameters, the analog prototype is transformed to the
desired digital shelving filter by a bilinear transformation with prewarping:

 Equalization

11-7

s = z − 1
z + 1 × 1

tan
ω0
2

Digital Coefficients

The table summarizes the results of the bilinear transformation with prewarping.

Low-Shelf b0 = A A + 1 − A− 1 cos(ω0) + 2α A
b1 = 2A A− 1 − A + 1 cos(ω0)
b2 = A A + 1 − A− 1 cos(ω0) − 2α A
a0 = A + 1 + A− 1 cos(ω0) + 2α A
a1 = − 2 A− 1 + A + 1 cos(ω0)
a2 = A + 1 + A− 1 cos(ω0) − 2α A

High-Shelf b0 = A A + 1 + A− 1 cos(ω0) + 2α A
b1 = − 2A A− 1 + A + 1 cos(ω0)
b2 = A A + 1 + A− 1 cos(ω0) − 2α A
a0 = A + 1 − A− 1 cos(ω0) + 2α A
a1 = 2 A− 1 + A + 1 cos(ω0)
a2 = A + 1 − A− 1 cos(ω0) − 2α A

Intermediate
Variables α =

sin ω0
2 A + 1

A
1

slope − 1 + 2A

ω0 = 2πCutof f Frequency
Fs

References
[1] Orfanidis, Sophocles J. "High-Order Digital Parametric Equalizer Design." Journal of

the Audio Engineering Society. Vol. 53, November 2005, pp. 1026–1046.

[2] Bristow-Johnson, Robert. "Cookbook Formulae for Audio EQ Biquad Filter
Coefficients." Accessed March 02, 2016. http://www.musicdsp.org/files/Audio-EQ-
Cookbook.txt.

11 Equalization

11-8

[3] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 2010.

[4] Bristow-Johnson, Robert. "The Equivalence of Various Methods of Computing Biquad
Coefficients for Audio Parametric Equalizers." Presented at the 97th Convention
of the AES, San Francisco, November 1994, AES Preprint 3906.

See Also
designParamEQ | designShelvingEQ | designVarSlopeFilter | graphicEQ |
multibandParametricEQ

More About
• “Parametric Equalizer Design”
• “Graphic Equalization”
• “Octave-Band and Fractional Octave-Band Filters”
• “Audio Weighting Filters”

 See Also

11-9

Deployment

12

Desktop Real-Time Audio Acceleration with MATLAB
Coder

This example shows how to accelerate a real-time audio application using C code
generation with MATLAB® Coder™. You must have the MATLAB Coder™ software
installed to run this example.

Introduction

Replacing parts of your MATLAB code with an automatically generated MATLAB
executable (MEX-function) can speed up simulation. Using MATLAB Coder, you can
generate readable and portable C code and compile it into a MEX-function that replaces
the equivalent section of your MATLAB algorithm.

This example showcases code generation using an audio notch filtering application.

Notch Filtering

A notch filter is used to eliminate a specific frequency from a signal. Typical filter design
parameters for notch filters are the notch center frequency and the 3 dB bandwidth. The
center frequency is the frequency at which the filter has a linear gain of zero. The 3 dB
bandwidth measures the frequency width of the notch of the filter computed at the half-
power or 3 dB attenuation point.

The helper function used in this example is helperAudioToneRemoval. The function reads
an audio signal corrupted by a 250 Hz sinusoidal tone from a file.
helperAudioToneRemoval uses a notch filter to remove the interfering tone and writes the
filtered signal to a file.

You can visualize the corrupted audio signal using a spectrum analyzer.

scope = dsp.SpectrumAnalyzer('SampleRate',44.1e3,...
 'RBWSource','Property','RBW',5,...
 'PlotAsTwoSidedSpectrum',false,...
 'SpectralAverages',10,...
 'FrequencySpan','Start and stop frequencies',...
 'StartFrequency',20,...
 'StopFrequency',1000,...
 'Title','Audio signal corrupted by 250 Hz tone');
reader = dsp.AudioFileReader('guitar_plus_tone.ogg');

while ~isDone(reader)

12 Deployment

12-2

 audio = reader();
 scope(audio(:,1));
end

C Code Generation Speedup

Measure the time it takes to read the audio file, filter out the interfering tone, and write
the filtered output using MATLAB code. Because helperAudioToneRemoval writes an
audio file output, you must have write permission in the current directory. To ensure write
access, change directory to your system's temporary folder.

mydir = pwd; addpath(mydir); cd(tempdir);
tic;
helperAudioToneRemoval;

 Desktop Real-Time Audio Acceleration with MATLAB Coder

12-3

t1 = toc;
fprintf('MATLAB Simulation Time: %d\n',t1);

MATLAB Simulation Time: 3.941983e+00

Next, generate a MEX-function from helperAudioToneRemoval using the MATLAB
Coder function, codegen.

codegen helperAudioToneRemoval

Measure the time it takes to execute the MEX-function and calculate the speedup gain
with a compiled function.

tic;
helperAudioToneRemoval_mex
t2 = toc;
fprintf('Code Generation Simulation Time: %d\n',t2);

Code Generation Simulation Time: 2.138478e+00

fprintf('Speedup factor: %6.2f\n',t1/t2);

Speedup factor: 1.84

cd(mydir);

See Also

Related Examples
• “Generate Standalone Executable for Parametric Audio Equalizer”
• “Deploy Audio Applications with MATLAB Compiler”

12 Deployment

12-4

Audio I/O User Guide

13

Run Audio I/O Features Outside MATLAB and Simulink
You can deploy these audio input and output features outside the MATLAB and Simulink
environments:

System Objects

• audioPlayerRecorder
• audioDeviceReader
• audioDeviceWriter
• dsp.AudioFileReader
• dsp.AudioFileWriter

Blocks

• Audio Device Reader
• Audio Device Writer
• From Multimedia File
• To Multimedia File

The generated code for the audio I/O features relies on prebuilt dynamic library files
included with MATLAB. You must account for these extra files when you run audio I/O
features outside the MATLAB and Simulink environments. To run a standalone executable
generated from a model or code containing the audio I/O features, set your system
environment using commands specific to your platform.

Platform Command
Mac setenv DYLD_LIBRARY_PATH "$

{DYLD_LIBRARY_PATH}:$MATLABROOT/b
in/maci64" (csh/tcsh)

export DYLD_LIBRARY_PATH=
$LD_LIBRARY_PATH:$MATLABROOT/bin/
maci64 (Bash)

13 Audio I/O User Guide

13-2

Platform Command
Linux setenv LD_LIBRARY_PATH $

{LD_LIBRARY_PATH}:$MATLABROOT/bin
/glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH=
$LD_LIBRARY_PATH:$MATLABROOT/bin/
glnxa64 (Bash)

Windows set PATH=%PATH%;%MATLABROOT%\bin
\win64

The path in these commands is valid only on systems that have MATLAB installed. If you
run the standalone app on a machine with only MCR, and no MATLAB installed,
replace $MATLABROOT/bin/... with the path to the MCR.

To run the code generated from the above System objects and blocks on a machine does
not have MCR or MATLAB installed, use the packNGo function. The packNGo function
packages all relevant files in a compressed zip file so that you can relocate, unpack, and
rebuild your project in another development environment with no MATLAB installed.

You can use the packNGo function at the command line or the Package option in
the MATLAB Coder app. The files are packaged in a compressed file that you can relocate
and unpack using a standard zip utility. For more details on how to pack the code
generated from MATLAB code, see “Package Code for Other Development Environments”
(MATLAB Coder). For more details on how to pack the code generated from Simulink
blocks, see the packNGo function.

See Also

More About
• “MATLAB Programming for Code Generation” (MATLAB Coder)

 See Also

13-3

Block Example Repository

14

Decrease Underrun
Examine the Audio Device Writer block in a Simulink® model, determine underrun, and
decrease underrun.

1. Run the model. The Audio Device Writer sends an audio stream to your computer's
default audio output device. The Audio Device Writer block sends the number of samples
underrun to your Time Scope.

14 Block Example Repository

14-2

2. Uncomment the Artificial Load block. This block performs computations that slow the
simulation.

3. Run the model. If your device writer is dropping samples:

a. Stop the simulation.

b. Open the From Multimedia File block.

 Decrease Underrun

14-3

c. Set the Samples per frame parameter to 1024.

d. Close the block and run the simulation.

If your model continues to drop samples, increase the frame size again. The increased
frame size increases the buffer size used by the sound card. A larger buffer size decreases
the possibility of underruns at the cost of higher audio latency.

See Also
From Multimedia File | Time Scope

14 Block Example Repository

14-4

Block Example Repository

• “Extract Cepstral Coefficients” on page 15-2
• “Tune Center Frequency Using Input Port” on page 15-4
• “Gate Audio Signal Using VAD” on page 15-6
• “Frequency-Domain Voice Activity Detection” on page 15-8
• “Visualize Noise Power” on page 15-9
• “Detect Presence of Speech” on page 15-13
• “Perform Graphic Equalization” on page 15-15
• “Split-Band De-Essing” on page 15-17
• “Diminish Plosives from Speech” on page 15-18
• “Suppress Loud Sounds” on page 15-19
• “Attenuate Low-Level Noise” on page 15-22
• “Suppress Volume of Loud Sounds” on page 15-25
• “Gate Background Noise” on page 15-28
• “Output Values from MIDI Control Surface” on page 15-31
• “Apply Frequency Weighting” on page 15-33
• “Compare Loudness Before and After Audio Processing” on page 15-35
• “Two-Band Crossover Filtering for a Stereo Speaker System” on page 15-37
• “Mimic Acoustic Environments” on page 15-39
• “Perform Parametric Equalization” on page 15-41
• “Perform Octave Filtering” on page 15-43
• “Read from Microphone and Write to Speaker” on page 15-45
• “Channel Mapping” on page 15-48
• “Trigger Gain Control Based on Loudness Measurement” on page 15-50

15

Extract Cepstral Coefficients
Use the Cepstral Feature Extractor block to extract and visualize cepstral coefficients
from an audio file.

15 Block Example Repository

15-2

See Also
Array Plot | Audio Device Writer | Cepstral Feature Extractor | From Multimedia File |
cepstralFeatureExtractor | gtcc | mfcc

 See Also

15-3

Tune Center Frequency Using Input Port
Tune the center frequency of an Octave Filter block in Simulink® using the optional input
port.

1. Run the simulation. The From Multimedia File block sends a stereo audio stream to the
Octave Filter block. The center frequency of the Octave Filter block can be tuned using
the manual switches routed into the optional input port. The filtered audio is sent to your
computer's default audio device. The filtered audio and unfiltered audio are sent to a
Spectrum Analyzer block for visualization.

2. Tune the center frequency by toggling manual switches routing constant values. The
constant value routed from the left is multiplied with the constant value routed from the
right. The center frequency of the Octave Filter block can be set at 400, 800, 4000, and
8000 Hz.

3. Observe the Spectrum Analyzer as you tune the center frequency. Note how the center
frequency changes as you toggle the manual switches.

15 Block Example Repository

15-4

See Also
Audio Device Writer | From Multimedia File | Manual Switch | Octave Filter | Time Scope

 See Also

15-5

Gate Audio Signal Using VAD
This model uses if-else block signal routing to replace regions of no speech with zeros.

To explore this model, tune the Probability of transition from a silence frame to a
speech frame and Probability of transition from a speech frame to a silence frame
parameters of the Voice Activity Detector (VAD) and observe the effect on the speech
presence probability. Toggle between the gated and original audio signal to assess the
quality of your system.

15 Block Example Repository

15-6

See Also
Audio Device Writer | From Multimedia File | If | If Action Subsystem | Manual Switch |
Random Source | Time Scope | Voice Activity Detector

 See Also

15-7

Frequency-Domain Voice Activity Detection
This model detects voice activity using a frequency-domain audio signal.

Voice Activity Detection is often used as an indication whether further processing or
analysis of a signal is required. Many processing and analysis techniques require a
frequency-domain representation of the signal. For example, the voice activity detection
algorithm operates in the frequency domain. To save computation, you can convert the
audio signal to the frequency domain once, and then feed the frequency-domain signal to
downstream analysis and processing.

This model additionally buffers the signal so that the VAD operates on half-overlapped
frames. Overlapping the input frames to the VAD increases the accuracy and resolution in
time of the probability of speech.

See Also
Buffer | Audio Device Writer | Delay | FFT | From Multimedia File | Time Scope | Voice
Activity Detector | Window Function

15 Block Example Repository

15-8

Visualize Noise Power
This model plots the noise power estimated by the Voice Activity Detector.

To explore this model, tune the Frequency (Hz) parameter of the Sine Wave block and
observe the noise power estimate updated on the Array Plot block.

 Visualize Noise Power

15-9

15 Block Example Repository

15-10

 Visualize Noise Power

15-11

Zoom in on the Array Plot to verify that the Voice Activity Detector outputs a good
estimate of the noise tone.

See Also
Array Plot | Audio Device Writer | From Multimedia File | Sine Wave | Time Scope | Voice
Activity Detector

15 Block Example Repository

15-12

Detect Presence of Speech
This model uses the Voice Activity Detector block to visualize the probability of speech
presence in an audio signal.

To explore this model, tune the Probability of transition from a silence frame to a
speech frame and Probability of transition from a speech frame to a silence frame
parameters of the Voice Activity Detector (VAD) and observe the effect on the speech
presence probability.

The Time Scope blocks plots the audio signal and associated voice activity probability.

 Detect Presence of Speech

15-13

See Also
Audio Device Writer | From Multimedia File | Time Scope | Voice Activity Detector

15 Block Example Repository

15-14

Perform Graphic Equalization
Examine the Graphic EQ block in a Simulink® model and tune parameters.

1. Open the Spectrum Analyzer and Graphic EQ blocks.

2. In the Graphic EQ block, click Visualize equalizer response. Modify gains of the
graphic equalizer and see the magnitude response plot update automatically.

3. Run the model. Tune gains on the Graphic EQ to listen to the effect on your audio
device and see the effect on the Spectrum Analyzer display. Double-click the Manual
Switch block to toggle between the original and equalized signal as output.

 Perform Graphic Equalization

15-15

See Also
Audio Device Writer | From Multimedia File | Graphic EQ | Spectrum Analyzer

15 Block Example Repository

15-16

Split-Band De-Essing
This model implements split-band de-essing by separating a speech signal into high and
low frequencies, applying dynamic range expansion to diminish the sibilant frequencies,
and then remixing the channels.

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance refers
to the s, z, and sh sounds in speech, which can be disproportionately emphasized during
recording. es sounds fall under the category of unvoiced speech with all consonants, and
have a higher frequency than voiced speech.

To explore the model, tune the parameters of the Expander and Crossover Filter
blocks. To switch between listening to the processed and unprocessed speech signal,
double-click the Manual Switch block. To view the effect of the processing, double-click
the Time Scope block.

See Also
Audio Device Writer | Crossover Filter | Expander | From Multimedia File | Time Scope

 Split-Band De-Essing

15-17

Diminish Plosives from Speech
This model minimizes the plosives of a speech signal by applying highpass filtering and
low-band compression.

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in p, d, and g words. Plosives can be emphasized by the recording process
and are often displeasurable to hear.

To explore this model, tune the highpass filter cutoff and the parameters on the
Compressor and Crossover Filter blocks. Switch between listening to the original
and processed signals by double-clicking the Manual Switch block.

See Also
Audio Device Writer | Compressor | Crossover Filter | From Multimedia File

15 Block Example Repository

15-18

Suppress Loud Sounds
Use the Compressor block to suppress loud sounds and visualize the applied compression
gain.

1. Open the Time Scope and Compressor blocks.

2. Run the model. To switch between listening to the compressed signal and the original
signal, double-click the Manual Switch block.

3. Observe how the applied gain depends on compression parameters and input signal
dynamics by tuning the Compressor block parameters and viewing the results on the
Time Scope.

 Suppress Loud Sounds

15-19

See Also
Audio Device Writer | Compressor | From Multimedia File | Matrix Concatenate | Time
Scope

15 Block Example Repository

15-20

More About
• “Dynamic Range Control” on page 6-2

 See Also

15-21

Attenuate Low-Level Noise
Use the Expander block to attenuate low-level noise and visualize the applied dynamic
range control gain.

1. Open the Time Scope and Expander blocks.

2. Run the model. To switch between listening to the expanded signal and the original
signal, double-click the Manual Switch block.

3. Observe how the applied gain depends on expansion parameters and input signal
dynamics by tuning the Expander block parameters and viewing the results on the Time
Scope.

15 Block Example Repository

15-22

See Also
Audio Device Writer | Colored Noise | Expander | From Multimedia File | Matrix
Concatenate | Time Scope

 See Also

15-23

More About
• “Dynamic Range Control” on page 6-2

15 Block Example Repository

15-24

Suppress Volume of Loud Sounds
Suppress the volume of loud sounds and visualize the applied dynamic range control gain.

1. Open the Time Scope and Limiter blocks.

2. Run the model. To switch between listening to the gated signal and the original signal,
double-click the Manual Switch block.

3. Observe how the applied gain depends on dynamic range limiting parameters and input
signal dynamics by tuning Limiter block parameters and viewing the results on the Time
Scope.

 Suppress Volume of Loud Sounds

15-25

See Also
Audio Device Writer | From Multimedia File | Limiter | Matrix Concatenate | Time Scope

15 Block Example Repository

15-26

More About
• “Dynamic Range Control” on page 6-2

 See Also

15-27

Gate Background Noise
Apply dynamic range gating to remove low-level noise from an audio file.

1. Open the Time Scope and Noise Gate blocks.

2. Run the model. To switch between listening to the gated signal and the original signal,
double-click the Manual Switch block.

3. Observe how the applied gain depends on noise gate parameters and input signal
dynamics by tuning Noise Gate block parameters and viewing the results on the Time
Scope.

15 Block Example Repository

15-28

See Also
Audio Device Writer | From Multimedia File | Matrix Concatenate | Noise Gate | Random
Source | Time Scope

 See Also

15-29

More About
• “Dynamic Range Control” on page 6-2

15 Block Example Repository

15-30

Output Values from MIDI Control Surface
The example shows how to set the MIDI Controls block parameters to output control
values from your MIDI device.

1. Connect a MIDI device to your computer and then open the model.

2. Run the model with default settings. Move any controller on your default MIDI device
to update the Display block.

3. Stop the simulation.

4. At the MATLAB™ command line, use midiid to determine the name of your MIDI
device and two control numbers associated with your device.

5. In the MIDI Control block dialog box, set MIDI device to Specify other and enter
the name of your MIDI device.

6. Set MIDI controls to Respond to specified controls and enter the control
numbers determined using midiid.

7. Specify initial values as a vector the same size as MIDI control numbers. The initial
values you specify are quantized according to the MIDI protocol and your particular MIDI
surface.

The dialog box shows sample values for a 'BCF2000' MIDI device with control numbers
1081 and 1083.

 Output Values from MIDI Control Surface

15-31

8. Click OK, and then run the model. Verify that the Display block shows initial values and
updates when you move the specified controls.

See Also
Audio Device Writer | From Multimedia File | MIDI Controls | Matrix Concatenate | Time
Scope

More About
• “MIDI Control Surface Interface” on page 8-2

15 Block Example Repository

15-32

Apply Frequency Weighting
Examine the Weighting Filter block in a Simulink® model and tune parameters.

1. Open the Spectrum Analyzer block.

2. Run the model. Switch between listening to the frequency-weighted signal and the
original signal by double-clicking the Manual Switch block.

3. Stop the model. Open the Weighting Filter block and choose a different weighting
method. Observe the difference in simulation.

 Apply Frequency Weighting

15-33

See Also
Audio Device Writer | From Multimedia File | Spectrum Analyzer | Weighting Filter

15 Block Example Repository

15-34

Compare Loudness Before and After Audio Processing
Measure momentary and short-term loudness before and after compression of a
streaming audio signal in Simulink®.

1. Open the Time Scope and Compressor blocks.

2. Run the model. To switch between listening to the compressed signal and the original
signal, double-click the switch.

3. Observe the effect of compression on loudness by tuning the Compressor block
parameters and viewing the momentary loudness on the Time Scope block.

 Compare Loudness Before and After Audio Processing

15-35

4. Stop the model. For both Loudness blocks, replace momentary loudness with short-
term loudness as input to the Matrix Concatenate block. Run the model again and observe
the effect of compression on short-term loudness.

See Also
Audio Device Writer | Compressor | From Multimedia File | Loudness Meter | Matrix
Concatenate | Time Scope

15 Block Example Repository

15-36

Two-Band Crossover Filtering for a Stereo Speaker
System

Divide a mono signal into a stereo signal with distinct frequency bands. To hear the full
effect of this simulation, use a stereo speaker system, such as headphones.

1. Open the Spectrum Analyzer and Crossover Filter blocks.

2. Run the model. To switch between listening to the filtered and original signal, double-
click the Manual Switch block.

3. Tune the crossover frequency on the Crossover Filter block to listen to the effect on
your speakers and view the effect on the Spectrum Analyzer block.

 Two-Band Crossover Filtering for a Stereo Speaker System

15-37

See Also
Audio Device Writer | Crossover Filter | From Multimedia File | Matrix Concatenate |
Spectrum Analyzer

15 Block Example Repository

15-38

Mimic Acoustic Environments
Examine the Reverberator block in a Simulink® model and tune parameters. The
reverberation parameters in this model mimic a large room with hard walls, such as a
gymnasium.

1. Run the simulation. Listen to the audio signal with and without reverberation by
double-clicking the Manual Switch block.

2. Stop the simulation.

3. Disconnect the From Multimedia File block so that you can run the model without
recording.

4. Open the Reverberator block.

5. Run the simulation and tune the parameters of the Reverberator block.

6. After you are satisfied with the reverberation environment, stop the simulation.

 Mimic Acoustic Environments

15-39

7. Reconnect the To Multimedia File block. Rename the output file with a description to
match your reverberation environment, and rerun the model.

See Also
Audio Device Writer | From Multimedia File | Matrix Concatenate | Reverberator | To
Multimedia File

15 Block Example Repository

15-40

Perform Parametric Equalization
Examine the Parametric EQ block in a Simulink® model and tune parameters.

1. Open the Spectrum Analyzer and Parametric EQ blocks.

2. In the Parametric EQ block, click View Filter Response. Modify parameters of the
parametric equalizer and see the magnitude response plot update automatically.

3. Run the model. Tune parameters on the Parametric EQ to listen to the effect on your
audio device and see the effect on the Spectrum Analyzer display. Double-click the
Manual Switch block to toggle between the original and equalized signal as output.

 Perform Parametric Equalization

15-41

See Also
Audio Device Writer | From Multimedia File | Matrix Concatenate | Parametric EQ |
Spectrum Analyzer

15 Block Example Repository

15-42

Perform Octave Filtering
Examine the Octave Filter block in a Simulink® model and tune parameters.

1. Open the Octave Filter block and click Visualize filter response. Tune parameters on
the Octave Filter dialog. The filter response visualization updates automatically. If you
break compliance with the ANSI S1.11-2004 standard, the filter mask is drawn in red.

2. Run the model. Open the Spectrum Analyzer block. Tune parameters on the Octave
Filter block to listen to the effect on your audio device and see the effect on the Spectrum
Analyzer display. Switch between listening to the filtered and unfiltered audio by double-
clicking the Manual Switch block.

 Perform Octave Filtering

15-43

See Also
Audio Device Writer | From Multimedia File | Octave Filter | Spectrum Analyzer

15 Block Example Repository

15-44

Read from Microphone and Write to Speaker
Examine the Audio Device Reader block in a Simulink® model, modify parameters, and
explore overrun.

1. Run the model. The Audio Device Reader records an audio stream from your
computer's default audio input device. The Reverberator block processes your input
audio. The Audio Device Writer block sends the processed audio to your default audio
output device.

 Read from Microphone and Write to Speaker

15-45

2. Stop the model. Open the Audio Device Reader block and lower the Samples per
frame parameter. Open the Time Scope block to view overrun.

15 Block Example Repository

15-46

3. Run the model again. Lowering the Samples per frame decreases the buffer size of
your Audio Device Reader block. A smaller buffer size decreases audio latency while
increasing the likelihood of overruns.

See Also
Audio Device Reader | Audio Device Writer | Reverberator | Time Scope

More About
• “Audio I/O: Buffering, Latency, and Throughput”

 See Also

15-47

Channel Mapping
Examine the Audio Device Writer block in a Simulink® model and specify a nondefault
channel mapping.

1. Run the simulation. The Audio Device Writer sends a stereo audio stream to your
computer's default audio output device. If you are using a stereo audio output device,
such as headphones, you can hear a tone from one speaker and noise from the other
speaker.

2. Specify a nondefault channel mapping:

a. Stop the simulation.

b. Open the Audio Device Writer block to modify parameters.

c. On the Advanced tab, clear the Use default channel mapping parameter.

d. Specify the Device output channels in reverse order: [2,1]. If you are using a stereo
output device, such as headphones, you hear that the noise and tone have switched
speakers.

See Also
Audio Device Writer | Matrix Concatenate | Random Source | Sine Wave

15 Block Example Repository

15-48

More About
• “Audio I/O: Buffering, Latency, and Throughput”

 See Also

15-49

Trigger Gain Control Based on Loudness Measurement
This model enables you to apply dynamic range compression to an audio signal while
staying inside a preset loudness range. In this model, a Compressor block increases the
loudness and decreases the dynamic range of an audio signal. A Loudness Meter block
calculates the momentary loudness of the compressed audio signal. If momentary
loudness crosses a -23 LUFS threshold, an enabled subsystem applies gain to lower the
corresponding level of the audio signal.

1. Open the Time Scope and Compressor blocks.

2. Run the model. To switch between listening to the compressed signal with and without
gain adjustment, double-click the switch.

3. To observe the effect of compression on loudness, tune the Compressor block
parameters and view the compressed audio signal on the Time Scope block.

15 Block Example Repository

15-50

See Also
Blocks
Audio Device Writer | Compressor | From Multimedia File | Loudness Meter | Time Scope

 See Also

15-51

System Objects
loudnessMeter

Functions
integratedLoudness

More About
• “Loudness Normalization in Accordance with EBU R 128 Standard”

15 Block Example Repository

15-52

Real-Time Parameter Tuning

16

Real-Time Parameter Tuning
Parameter tuning is the ability to modify parameters of your audio system in real time
while streaming an audio signal. In algorithm development, tunable parameters enable
you to quickly prototype and test various parameter configurations. In deployed
applications, tunable parameters enable users to fine-tune general algorithms for specific
purposes, and to react to changing dynamics.

Audio Toolbox is optimized for parameter tuning in a real-time audio stream. The System
objects, blocks, and audio plugins provide various tunable parameters, including sample
rate and frame size, making them robust tools when used in an audio stream loop.

To optimize your use of Audio Toolbox, package your audio processing algorithm as an
audio plugin. Packaging your audio algorithm as an audio plugin enables you to prototype
your algorithm using the Audio Test Bench. The Audio Test Bench creates a user
interface (UI) for tunable parameters, enables you to specify input and output from your
audio stream loop, and provides access to analysis tools such as the time scope and
spectrum analyzer. Packaging your code as an audio plugin also enables you to quickly
synchronize your parameters with MIDI controls. For more information, see “Design an
Audio Plugin” and “Audio Test Bench Walkthrough” on page 9-2.

Other methods to create UIs in MATLAB include:

• App Designer –– Development environment for a large set of interactive controls with
support for 2-D plots. See “Create and Run a Simple App Using App Designer”
(MATLAB) for more information.

• GUIDE –– Drag-and-drop environment for laying out user interfaces with support for
any type of plot. See “Create a Simple App Using GUIDE” (MATLAB) for more
information.

• Programmatic workflow –– Use MATLAB functions to define your app element-by-
element. This tutorial uses a programmatic approach.

See “Ways to Build Apps” (MATLAB) for a more detailed list of the costs and benefits of
the different approaches to parameter tuning.

Programmatic Parameter Tuning
In this tutorial, you tune the value of a parameter in an audio stream loop.

This tutorial contains three files:

16 Real-Time Parameter Tuning

16-2

1 parameterRef –– Class definition that contains tunable parameters
2 parameterTuningUI –– Function that creates a UI for parameter tuning
3 AudioProcessingScript –– Script for audio processing

Inspect the diagram for an overview of how real-time parameter tuning is implemented.
To implement real-time parameter tuning, walk through the example for explanations and
step-by-step instructions.

1. Create Class with Tunable Parameters

To tune a parameter in an audio stream loop using a UI, you need to associate the
parameter with the position of a UI widget. To associate a parameter with a UI widget,
make the parameter an object of a handle class. Objects of handle classes are passed by
reference, meaning that you can modify the value of the object in one place and use the
updated value in another. For example, you can modify the value of the object using a
slider on a figure and use the updated value in an audio processing loop.

Save the parameterRef class definition file to your current folder.

classdef parameterRef < handle
 properties

 Real-Time Parameter Tuning

16-3

 name
 value
 end
end

Objects of the parameterRef class have a name and value. The name is for display
purposes on the UI. You use the value for tuning.

2. Create Function to Generate a UI

The parameterTuningUI function accepts your parameter, specified as an object
handle, and the desired range. The function creates a figure with a slider associated with
your parameter. The nested function, slidercb, is called whenever the slider position
changes. The slider callback function maps the position of the slider to the parameter
range, updates the value of the parameter, and updates the text on the UI. You can easily
modify this function to tune multiple parameters in the same UI.

Save parameterTuningUI to Current Folder

Open parameterTuningUI and save it to your current folder.

16 Real-Time Parameter Tuning

16-4

function parameterTuningUI(parameter,parameterMin,parameterMax)

% Map slider position to specified range
rangeVector = linspace(parameterMin,parameterMax,1001);
[~,idx] = min(abs(rangeVector-parameter.value));
initialSliderPosition = idx/1000;

% Main figure
hMainFigure = figure(...
 'Name', 'Parameter Tuning', ...
 'MenuBar','none', ...
 'Toolbar','none', ...
 'HandleVisibility','callback', ...
 'NumberTitle','off', ...
 'IntegerHandle','off');

 % Slider to tune parameter
 uicontrol('Parent',hMainFigure, ...
 'Style','slider', ...
 'Position',[80,205,400,23], ...
 'Value',initialSliderPosition, ...
 'Callback',@slidercb);

 % Label for slider
 uicontrol('Parent',hMainFigure, ...
 'Style','text', ...
 'Position',[10,200,70,23], ...
 'String',parameter.name);

 % Display current parameter value
 paramValueDisplay = uicontrol('Parent',hMainFigure, ...
 'Style','text', ...
 'Position', [490,205,50,23], ...
 'BackgroundColor','white', ...
 'String',parameter.value);

 % Update parameter value if slider value changed
 function slidercb(slider,~)
 val = get(slider,'Value');
 rangeVectorIndex = round(val*1000)+1;
 parameter.value = rangeVector(rangeVectorIndex);
 set(paramValueDisplay,'String',num2str(parameter.value));
 end
end

 Real-Time Parameter Tuning

16-5

3. Create Script for Audio Processing

The audio processing script:

A Creates input and output objects for an audio stream loop.
B Creates an object of the handle class, parameterRef, that stores your parameter

name and value.
C Calls the tuning UI function, parameterTuningUI, with your parameter and the

parameter range.
D Processes the audio in a loop. You can tune your parameter, x, in the audio stream

loop.

Run AudioProcessingScript

Open AudioProcessingScript, save it to your current folder, and then run the file.

%% A. Create input and output objects
fileReader = dsp.AudioFileReader(...
 'speech_dft.mp3', ...
 'SamplesPerFrame',64, ...
 'PlayCount',3);
deviceWriter = audioDeviceWriter(...
 'SampleRate', fileReader.SampleRate);

%% B. Create an object of a handle class
x = parameterRef;
x.name = 'gain';
x.value = 2.5;

%% C. Open the UI function for your parameter
parameterTuningUI(x,0,5);

%% D. Process audio in a loop
while ~isDone(fileReader)
 audioIn = fileReader();

 drawnow limitrate
 audioOut = audioIn.*x.value;

 deviceWriter(audioOut);
end

% Release input and output objects

16 Real-Time Parameter Tuning

16-6

release(fileReader);
release(deviceWriter);

While the script runs, move the position of the slider to update your parameter value and
hear the result.

See Also
Audio Test Bench

More About
• “Real-Time Audio in MATLAB”
• “Design an Audio Plugin”
• “Audio Test Bench Walkthrough” on page 9-2
• “Create and Run a Simple App Using App Designer” (MATLAB)
• “Create a Simple App Using GUIDE” (MATLAB)
• “Ways to Build Apps” (MATLAB)

 See Also

16-7

Sample Audio Files

17

Sample Audio Files
Use these audio files as input to your audio system.

See Also
Functions
audioread

System Objects
dsp.AudioFileReader

Blocks
From Multimedia File

More About
• “Audio I/O: Buffering, Latency, and Throughput”

17 Sample Audio Files

17-2

Tips and Tricks for Plugin Authoring

18

Tips and Tricks for Plugin Authoring
To author your algorithm as an audio plugin, you must conform to the audio plugin API.
When authoring audio plugins in the MATLAB environment, keep these common pitfalls
and best practices in mind.

To learn more about audio plugins in general, see “Design an Audio Plugin”.

Avoid Disrupting the Event Queue in MATLAB
When the Audio Test Bench runs an audio plugin, it sequentially:

1 Calls the reset method
2 Sets tunable properties associated with parameters
3 Calls the process method

While running, the Audio Test Bench calls in a loop the process method and then the
set methods for tuned properties. The plugin API does not specify the order that the
tuned properties are set.

It is possible to disrupt the normal methods timing by interrupting the event queue.
Common ways to accidentally interrupt the event queue include using a plot or drawnow
function.

Note plot and drawnow are only available in the MATLAB environment. plot and
drawnow cannot be included in generated plugins. See “Separate Code for Features Not
Supported for Plugin Generation” on page 18-6 for more information.

18 Tips and Tricks for Plugin Authoring

18-2

In the following code snippet, the gain applied to the left and right channels is not the
same if the associated Gain parameter is tuned during the call to process:

...
L = plugin.Gain*in(:,1);
drawnow
R = plugin.Gain*in(:,2);
out = [L,R];
...

See Full Code
classdef badPlugin < audioPlugin
 properties
 Gain = 0.5;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(audioPluginParameter('Gain'));
 end
 methods
 function out = process(plugin,in)

 L = plugin.Gain*in(:,1);

 drawnow

 R = plugin.Gain*in(:,2);

 out = [L,R];
 end
 function set.Gain(plugin,val)
 plugin.Gain = val;
 end
 end
end

The author interrupts the event queue in the code snippet, causing the set methods of
properties associated with parameters to be called while the process method is in the
middle of execution.

 Tips and Tricks for Plugin Authoring

18-3

Depending on your processing algorithm, interrupting the event queue can lead to
inconsistent and buggy behavior. Also, the set method might not be explicit, which can
make the issue difficult to track down. Possible fixes for the problem of event queue
disruption include saving properties to local variables, and moving the queue disruption
to the beginning or end of the process method.

Save Properties to Local Variables

You can save tunable property values to local variables at the start of your processing.
This technique ensures that the values used during the process method are not updated
within a single call to process. Because accessing the value of a local variable is cheaper
than accessing the value of a property, saving properties to local variables that are
accessed multiple times is a best practice.

...
gain = plugin.Gain;
L = gain*in(:,1);
drawnow
R = gain*in(:,2);
out = [L,R];
...

See Full Code
classdef goodPlugin < audioPlugin
 properties

18 Tips and Tricks for Plugin Authoring

18-4

 Gain = 0.5;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(audioPluginParameter('Gain'));
 end
 methods
 function out = process(plugin,in)
 gain = plugin.Gain;

 L = gain*in(:,1);

 drawnow

 R = gain*in(:,2);

 out = [L,R];
 end
 function set.Gain(plugin,val)
 plugin.Gain = val;
 end
 end
end

Move Queue Disruption to Bottom or Top of Process Method

You can move the disruption to the event queue to the bottom or top of the process
method. This technique ensures that property values are not updated in the middle of the
call.

...
L = plugin.Gain*in(:,1);
R = plugin.Gain*in(:,2);
out = [L,R];
drawnow
...

See Full Code
classdef goodPlugin < audioPlugin
 properties
 Gain = 0.5;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(audioPluginParameter('Gain'));
 end
 methods
 function out = process(plugin,in)

 L = plugin.Gain*in(:,1);

 R = plugin.Gain*in(:,2);

 out = [L,R];

 drawnow
 end
 function set.Gain(plugin,val)

 Tips and Tricks for Plugin Authoring

18-5

 plugin.Gain = val;
 end
 end
end

Separate Code for Features Not Supported for Plugin
Generation
The MATLAB environment offers functionality not supported for plugin generation. You
can mark code to ignore during plugin generation by placing it inside a conditional
statement by using coder.target.

...
 if coder.target('MATLAB')
 ...
 end
...

If you generate the plugin using generateAudioPlugin, code inside the statement if
coder.target('MATLAB') is ignored.

For example, dsp.TimeScope is not enabled for code generation. If you run the following
plugin in MATLAB, you can use the visualize function to open a time scope that plots the
input and output power per frame.

See Full Example Code
classdef pluginWithMATLABOnlyFeatures < audioPlugin
 properties
 Threshold = -10;
 end
 properties (Access = private)
 aCompressor
 aScope
 SamplesPerFrame = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Threshold','Mapping',{'lin',-60,20}));
 end
 methods
 function plugin = pluginWithMATLABOnlyFeatures
 plugin.aCompressor = compressor;
 setup(plugin.aCompressor,[0,0])
 end
 function out = process(plugin,in)
 out = plugin.aCompressor(in);

 % The contents of this if-statement are ignored during plugin
 % generation.
 if coder.target('MATLAB')
 if ~isempty(plugin.aScope) && isvalid(plugin.aScope)

18 Tips and Tricks for Plugin Authoring

18-6

 numSamples = size(in,1);

 % The time scope object is not enabled for
 % variable-size signals. Call release if the samples
 % per frame is changed.
 % Because this code is intended for use in MATLAB only,
 % it is okay to call release on the time scope object.
 % Do not call release on a System object in generated
 % code.
 if plugin.SamplesPerFrame(1) ~= numSamples
 release(plugin.aScope)
 plugin.SamplesPerFrame = numSamples;
 end

 power = 20*log10(mean(var(in)))*ones(numSamples,1);
 adjustedPower = 20*log10(mean(var(out)))*ones(numSamples,1);
 plugin.aScope([power,adjustedPower]);
 end
 end
 end
 function reset(plugin)
 fs = getSampleRate(plugin);
 plugin.aCompressor.SampleRate = fs;
 reset(plugin.aCompressor)

 % The contents of this if-statement are ignored during plugin
 % genderation.
 if coder.target('MATLAB')
 if ~isempty(plugin.aScope)
 % Because this code is intended for use in MATLAB only,
 % it is okay to call release on the time scope object.
 % Do not call release on a System object in generated
 % code.
 release(plugin.aScope)
 plugin.aScope.SampleRate = fs;
 plugin.aScope.BufferLength = 2*fs;
 end
 end
 end
 function visualize(plugin)
 % Visualization function. This function is public in the MATLAB
 % environment. Because the plugin does not call this function
 % directly, the function is not part of the code generated by
 % generateAudioPlugin.

 % Create a time scope object for visualization in the MATLAB
 % environment.
 plugin.aScope = dsp.TimeScope(...
 'SampleRate',getSampleRate(plugin), ...
 'TimeSpan',1, ...
 'YLimits',[-40,0], ...
 'BufferLength',2*getSampleRate(plugin), ...
 'TimeSpanOverrunAction','Scroll', ...
 'YLabel','Power (dB)');
 show(plugin.aScope)
 end
 function set.Threshold(plugin,val)
 plugin.Threshold = val;
 plugin.aCompressor.Threshold = val;
 end
 end
end

 Tips and Tricks for Plugin Authoring

18-7

Implement Reset Correctly
A common error in audio plugin authoring is misusing the reset method. Valid uses of the
reset method include:

• Clearing state
• Passing down calls to reset to component objects
• Updating properties which depend on sample rate

Invalid use of the reset method includes setting the value of any properties associated
with parameters. Do not use your reset method to set properties associated with
parameters to their initial conditions. Directly setting a property associated with a
parameter causes the property to be out of sync with the parameter. For example, the
following plugin is an example of incorrect use of the reset method.
classdef badReset < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(audioPluginParameter('Gain'));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 function reset(plugin) % <-- Incorrect use of reset method.
 plugin.Gain = 1; % <-- Never set values of a property that is
 end % associated with a plugin parameter.
 end
end

Implement Plugin Composition Correctly
If your plugin is composed of other plugins, then you must pass down the sample rate and
calls to reset to the component plugins. Call setSampleRate in the reset method to pass
down the sample rate to the component plugins. To tune parameters of the component
plugins, create an audio plugin interface in the composite plugin for tunable parameters
of the component plugins. Then pass down the values in the set methods for the
associated properties. The following is an example of plugin composition that was
constructed using best practices.

Plugin Composition Using Basic Plugins
classdef compositePlugin < audioPlugin
 properties
 PhaserQ = 1.6;
 EchoGain = 0.5;

18 Tips and Tricks for Plugin Authoring

18-8

 end
 properties (Access = private)
 aEcho
 aPhaser
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('PhaserQ', ...
 'DisplayName','Phaser Q', ...
 'Mapping',{'lin',0.5, 25}), ...
 audioPluginParameter('EchoGain', ...
 'DisplayName','Gain'));
 end
 methods
 function plugin = compositePlugin
 % Construct your component plugins in the composite plugin's
 % constructor.
 plugin.aPhaser = audiopluginexample.Phaser;
 plugin.aEcho = audiopluginexample.Echo;
 end
 function out = process(plugin,in)
 % Call the process method of your component plugins inside the
 % call to the process method of your composite plugin.
 x = process(plugin.aPhaser,in);
 y = process(plugin.aEcho,x);
 out = y;
 end
 function reset(plugin)
 % Use the setSampleRate method to set the sample rate of
 % component plugins and pass the call to reset down.
 fs = getSampleRate(plugin);

 setSampleRate(plugin.aPhaser, fs)
 setSampleRate(plugin.aEcho, fs)

 reset(plugin.aPhaser)
 reset(plugin.aEcho);
 end
 % Use the set method of your properties to pass down property
 % values to your component plugins.
 function set.PhaserQ(plugin,val)
 plugin.PhaserQ = val;
 plugin.aPhaser.QualityFactor = val;
 end
 function set.EchoGain(plugin,val)
 plugin.EchoGain = val;
 plugin.aEcho.Gain = val;
 end
 end
end

Plugin composition using System objects has these key differences from plugin
composition using basic plugins.

• Immediately call setup on your component System object after it is constructed.
Construction and setup of the component object occurs inside the constructor of the
composite plugin.

 Tips and Tricks for Plugin Authoring

18-9

• If your component System object requires sample rate information, then it has a
sample rate property. Set the sample rate property in the reset method.

Plugin Composition Using System Objects
classdef compositePluginWithSystemObjects < audioPlugin
 properties
 CrossoverFrequency = 100;
 CompressorThreshold = -40;
 end
 properties (Access = private)
 aCrossoverFilter
 aCompressor
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('CrossoverFrequency', ...
 'DisplayName','Crossover Frequency', ...
 'Mapping',{'lin',50, 200}), ...
 audioPluginParameter('CompressorThreshold', ...
 'DisplayName','Compressor Threshold', ...
 'Mapping',{'lin',-100,0}));
 end
 methods
 function plugin = compositePluginWithSystemObjects
 % Construct your component System objects within the composite
 % plugin's constructor. Call setup immediately after
 % construction.
 %
 % The audio plugin API requires plugins to declare the number
 % of input and output channels in the plugin interface. This
 % plugin uses the default 2-in 2-out configuration. Call setup
 % with a sample input that has the same number of channels as
 % defined in the plugin interface.
 %
 sampleInput = zeros(1,2);

 plugin.aCrossoverFilter = crossoverFilter;
 setup(plugin.aCrossoverFilter,sampleInput)

 plugin.aCompressor = compressor;
 setup(plugin.aCompressor,sampleInput)
 end
 function out = process(plugin,in)
 % Call your component System objects inside the call to
 % process of your composite plugin.
 [band1,band2] = plugin.aCrossoverFilter(in);
 band1Compressed = plugin.aCompressor(band1);
 out = band1Compressed + band2;
 end
 function reset(plugin)
 % Set the sample rate properties of your component System
 % objects.
 fs = getSampleRate(plugin);

 plugin.aCrossoverFilter.SampleRate = fs;
 plugin.aCompressor.SampleRate = fs;

 reset(plugin.aCrossoverFilter)
 reset(plugin.aCompressor);
 end

18 Tips and Tricks for Plugin Authoring

18-10

 % Use the set method of your properties to pass down property
 % values to your component System objects.
 function set.CrossoverFrequency(plugin,val)
 plugin.CrossoverFrequency = val;
 plugin.aCrossoverFilter.CrossoverFrequencies = val;
 end
 function set.CompressorThreshold(plugin,val)
 plugin.CompressorThreshold = val;
 plugin.aCompressor.Threshold = val;
 end
 end
end

Address "A set method for a non-Dependent property should
not access another property" Warning in Plugin
It is recommended that you suppress the warning when authoring audio plugins.

The following code snippet follows the plugin authoring best practice for processing
changes in parameter property Cutoff.
...
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Cutoff', ...
 'Label','Hz',...
 'Mapping',{'log',20,2000}));
 end
 methods
 function y = process(plugin,x)
 [y,plugin.State] = filter(plugin.B,plugin.A,x,plugin.State);
 end

 function set.Cutoff(plugin,val)
 plugin.Cutoff = val;
 [plugin.B,plugin.A] = highpassCoeffs(plugin,val,getSampleRate(plugin)); % <<<< warning occurs here
 end
 end
...

See Full Code Example
classdef highpassFilter < audioPlugin
 %---
 % Public Properties - End user interacts with these
 %---
 properties
 Cutoff = 20;
 end

 %---
 % Private Properties - Used for internal storage
 %---
 properties (Access = private)
 State = zeros(2);
 B = zeros(1,3);
 A = zeros(1,3);

 Tips and Tricks for Plugin Authoring

18-11

 end

 %---
 % Constant Properties - Used to define plugin interface
 %---
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Cutoff', ...
 'Label','Hz', ...
 'Mapping',{'log',20,2000}));
 end

 methods
 %---
 % Main processing function
 %---
 function y = process(plugin,x)
 [y,plugin.State] = filter(plugin.B,plugin.A,x,plugin.State);
 end

 %---
 % Set Method
 %---
 function set.Cutoff(plugin,val)
 plugin.Cutoff = val;
 [plugin.B,plugin.A] = highpassCoeffs(plugin,val,getSampleRate(plugin)); % <<<< warning occurs here
 end

 %---
 % Reset Method
 %---
 function reset(plugin)
 plugin.State = zeros(2);
 [plugin.B,plugin.A] = highpassCoeffs(plugin,plugin.Cutoff,getSampleRate(plugin));
 end
 end
 methods (Access = private)
 %---
 % Calculate Filter Coefficients
 %---
 function [B,A] = highpassCoeffs(~,fc,fs)
 w0 = 2*pi*fc/fs;
 alpha = sin(w0)/sqrt(2);
 cosw0 = cos(w0);
 norm = 1/(1+alpha);
 B = (1 + cosw0)*norm * [.5 -1 .5];
 A = [1 -2*cosw0*norm (1 - alpha)*norm];
 end
 end
end

The highpassCoeffs function might be expensive, and should be called only when
necessary. You do not want to call highpassCoeffs in the process method, which runs in
the real-time audio processing loop. The logical place to call highpassCoeffs is in
set.Cutoff. However, mlint shows a warning for this practice. The warning is intended
to help you avoid initialization order issues when saving and loading classes. See “Avoid
Property Initialization Order Dependency” (MATLAB) for more details. The solution
recommended by the warning is to create a dependent property with a get method and

18 Tips and Tricks for Plugin Authoring

18-12

compute the value there. However, following the recommendation complicates the design
and pushes the computation back into the real-time processing method, which you are
trying to avoid.

You might also incur the warning when correctly implementing plugin composition. For an
example of a correct implementation of composition, see “Implement Plugin Composition
Correctly” on page 18-8.

Use System Object That Does Not Support Variable-Size
Signals
The audio plugin API requires audio plugins to support variable-size inputs and outputs.
For a partial list of System objects that support variable-size signals, see “Variable-Size
Signal Support DSP System Objects” (DSP System Toolbox). You might encounter issues if
you attempt to use objects that do not support variable-size signals in your plugin.

For example, dsp.AnalyticSignal does not support variable-size signals. The
BrokenAnalyticSignalTransformer plugin uses a dsp.AnalyticSignal object
incorrectly and fails the validateAudioPlugin test bench:

validateAudioPlugin BrokenAnalyticSignalTransformer

Checking plug-in class 'BrokenAnalyticSignalTransformer'... passed.
Generating testbench file 'testbench_BrokenAnalyticSignalTransformer.m'... done.
Running testbench...
Error using dsp.AnalyticSignal/parenReference
Changing the size on input 1 is not allowed without first calling the release() method.

Error in BrokenAnalyticSignalTransformer/process (line 13)
 analyticSignal = plugin.Transformer(in);

Error in testbench_BrokenAnalyticSignalTransformer (line 61)
 o1 = process(plugin, in(:,1));

Error in validateAudioPlugin

See BrokenAnalyticSignalTransformer Code

classdef BrokenAnalyticSignalTransformer < audioPlugin
 properties (Access = private)
 Transformer
 end
 properties (Constant)
 PluginInterface = audioPluginInterface('InputChannels',1,'OutputChannels',2);
 end
 methods
 function plugin = BrokenAnalyticSignalTransformer
 plugin.Transformer = dsp.AnalyticSignal;
 end

 Tips and Tricks for Plugin Authoring

18-13

 function out = process(plugin,in)
 analyticSignal = plugin.Transformer(in);
 realPart = real(analyticSignal);
 imaginaryPart = imag(analyticSignal);
 out = [realPart,imaginaryPart];
 end
 end
end

If you want to use the functionality of a System object that does not support variable-size
signals, you can buffer the input and output of the System object, or always call the object
with one sample.

Always Call the Object with One Sample

You can create a loop around your call to an object. The loop iterates for the number of
samples in your variable frame size. The call to the object inside the loop is always a
single sample.

See Full Code Example
classdef ExpensiveAnalyticSignalTransformer < audioPlugin
 properties (Access = private)
 Transformer
 end
 properties (Constant)
 PluginInterface = audioPluginInterface('InputChannels',1,'OutputChannels',2);
 end
 methods
 function plugin = ExpensiveAnalyticSignalTransformer
 plugin.Transformer = dsp.AnalyticSignal;
 end
 function out = process(plugin,in)
 analyticSignal = complex(zeros(size(in,1),1),0);
 for i = 1:size(in,1)
 analyticSignal(i,:) = plugin.Transformer(in(i,1));

18 Tips and Tricks for Plugin Authoring

18-14

 end
 out = [real(analyticSignal),imag(analyticSignal)];
 end
 end
end

Note Depending on your implementation and the particular object, calling an object
sample by sample in a loop might result in significant computational cost.

Buffer Input and Output of Object

You can buffer the input to your object to a consistent frame size, and then buffer the
output of your object back to the original frame size. The dsp.AsyncBuffer System
object is well-suited for this task.

See Full Code Example
classdef DelayedAnalyticSignalTransformer < audioPlugin
 properties (Access = private)
 Transformer
 InputBuffer
 OutputBuffer
 end
 properties (Constant)
 PluginInterface = audioPluginInterface('InputChannels',1,'OutputChannels',2);
 MinSampleDelay = 256;
 end
 methods
 function plugin = DelayedAnalyticSignalTransformer
 plugin.Transformer = dsp.AnalyticSignal;
 setup(plugin.Transformer,ones(plugin.MinSampleDelay,1));

 plugin.InputBuffer = dsp.AsyncBuffer;
 setup(plugin.InputBuffer,1);

 plugin.OutputBuffer = dsp.AsyncBuffer;
 setup(plugin.OutputBuffer,[1,1]);
 end

 Tips and Tricks for Plugin Authoring

18-15

 function out = process(plugin,in)
 write(plugin.InputBuffer,in);

 while plugin.InputBuffer.NumUnreadSamples >= plugin.MinSampleDelay
 x = read(plugin.InputBuffer,plugin.MinSampleDelay);
 analyticSignal = plugin.Transformer(x(1:plugin.MinSampleDelay,:));
 write(plugin.OutputBuffer,[real(analyticSignal),imag(analyticSignal)]);
 end

 if plugin.OutputBuffer.NumUnreadSamples >= size(in,1)
 out = read(plugin.OutputBuffer,size(in,1));
 else
 out = zeros(size(in,1),2);
 end
 end
 function reset(plugin)
 reset(plugin.Transformer)
 reset(plugin.InputBuffer)
 reset(plugin.OutputBuffer)
 end
 end
end

Note Use of the asynchronous buffering object forces a minimum latency of your
specified frame size.

Using Enumeration Parameter Mapping
It is often useful to associate a property with a set of strings or character vectors.
However, restrictions on plugin generation require cached values, such as property
values, to have a static size. To work around this issue, you can use a separate
enumeration class that maps the strings to the enumerations, as described in the
audioPluginParameter documentation.

Alternatively, if you want to avoid writing an enumeration class and keep all your code in
one file, you can use a dependent property to map your parameter names to a set of
values. In this scenario, you map your enumeration value to a value that you can cache.

18 Tips and Tricks for Plugin Authoring

18-16

See Full Code Example
classdef pluginWithEnumMapping < audioPlugin
 properties (Dependent)
 Mode = '+6 dB';
 end
 properties (Access = private)
 pMode = 1; % '+6 dB'
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Mode',...
 'Mapping',{'enum','+6 dB','-6 dB','silence','white noise'}));
 end
 methods
 function out = process(plugin,in)
 switch (plugin.pMode)
 case 1
 out = in * 2;
 case 2
 out = in / 2;
 case 3
 out = zeros(size(in));
 otherwise % case 4
 out = rand(size(in)) - 0.5;
 end
 end
 function set.Mode(plugin,val)
 validatestring(val,{'+6 dB','-6 dB','silence','white noise'},'set.Mode','Mode');
 switch val
 case '+6 dB'
 plugin.pMode = 1;
 case '-6 dB'
 plugin.pMode = 2;
 case 'silence'
 plugin.pMode = 3;
 otherwise % 'white noise'
 plugin.pMode = 4;
 end
 end
 function out = get.Mode(plugin)
 switch plugin.pMode
 case 1

 Tips and Tricks for Plugin Authoring

18-17

 out = '+6 dB';
 case 2
 out = '-6 dB';
 case 3
 out = 'silence';
 otherwise % case 4
 out = 'white noise';
 end
 end
 end
end

See Also

More About
• “Design an Audio Plugin”
• “Audio Plugin Example Gallery” on page 10-2
• “Export a MATLAB Plugin to a DAW”

18 Tips and Tricks for Plugin Authoring

18-18

Spectral Descriptors Chapter

19

Spectral Descriptors
Audio Toolbox™ provides a suite of functions that describe the shape, sometimes referred
to as timbre, of audio. This example defines the equations used to determine the spectral
features, cites common uses of each feature, and provides examples so that you can gain
intuition about what the spectral descriptors are describing.

Spectral descriptors are widely used in machine and deep learning applications, and
perceptual analysis. Spectral descriptors have been applied to a range of applications,
including:

• Speaker identification and recognition [21]
• Acoustic scene recognition [11] [17]
• Instrument recognition [22]
• Music genre classification [16] [18]
• Mood recognition [19] [20]
• Voice activity detection [5] [7] [8] [10] [12] [13]

Spectral Centroid

The spectral centroid (spectralCentroid) is the frequency-weighted sum normalized
by the unweighted sum [1]:

μ1 =
∑k = b1

b2 fk sk

∑k = b1
b2 sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are

both commonly used.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral centroid.

The spectral centroid represents the "center of gravity" of the spectrum. It is used as an
indication of brightness [2] and is commonly used in music analysis and genre
classification. For example, observe the jumps in the centroid corresponding to high hat
hits in the audio file.

19 Spectral Descriptors Chapter

19-2

[audio,fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
audio = sum(audio,2)/2;

centroid = spectralCentroid(audio,fs);

subplot(2,1,1)
t = linspace(0,size(audio,1)/fs,size(audio,1));
plot(t,audio)
ylabel('Amplitude')

subplot(2,1,2)
t = linspace(0,size(audio,1)/fs,size(centroid,1));
plot(t,centroid)
xlabel('Time (s)')
ylabel('Centroid (Hz)')

 Spectral Descriptors

19-3

The spectral centroid is also commonly used to classify speech as voiced or unvoiced [3].
For example, the centroid jumps in regions of unvoiced speech.

[audio,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

centroid = spectralCentroid(audio,fs);

subplot(2,1,1)
t = linspace(0,size(audio,1)/fs,size(audio,1));
plot(t,audio)
ylabel('Amplitude')

subplot(2,1,2)
t = linspace(0,size(audio,1)/fs,size(centroid,1));

19 Spectral Descriptors Chapter

19-4

plot(t,centroid)
xlabel('Time (s)')
ylabel('Centroid (Hz)')

Spectral Spread

Spectral spread (spectralSpread) is the standard deviation around the spectral
centroid [1]:

μ2 =
∑k = b1

b2 fk− μ1
2sk

∑k = b1
b2 sk

 Spectral Descriptors

19-5

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are

both commonly used.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.
• μ1 is the spectral centroid.

The spectral spread represents the "instantaneous bandwidth" of the spectrum. It is used
as an indication of the dominance of a tone. For example, the spread increases as the
tones diverge and decreases as the tones converge.

fs = 16e3;
tone = audioOscillator('SampleRate',fs,'NumTones',2,'SamplesPerFrame',512,'Frequency',[2000,100]);
duration = 5;
numLoops = floor(duration*fs/tone.SamplesPerFrame);
signal = [];
for i = 1:numLoops
 signal = [signal;tone()];
 if i<numLoops/2
 tone.Frequency = tone.Frequency + [0,50];
 else
 tone.Frequency = tone.Frequency - [0,50];
 end
end

spread = spectralSpread(signal,fs);

subplot(2,1,1)
spectrogram(signal,round(fs*0.05),round(fs*0.04),2048,fs,'yaxis')

subplot(2,1,2)
t = linspace(0,size(signal,1)/fs,size(spread,1));
plot(t,spread)
xlabel('Time (s)')
ylabel('Spread')

19 Spectral Descriptors Chapter

19-6

Spectral Skewness

Spectral skewness (spectralSkewness) is computed from the third order moment [1]:

μ3 =
∑k = b1

b2 fk− μ1
3sk

μ2
3∑k = b1

b2 sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are

both commonly used.

 Spectral Descriptors

19-7

• b1 and b2 are the band edges, in bins, over which to calculate the spectral skewness.
• μ1 is the spectral centroid.
• μ2 is the spectral spread.

The spectral skewness measures symmetry around the centroid. In phonetics, spectral
skewness is often referred to as spectral tilt and is used with other spectral moments to
distinguish the place of articulation [4]. For harmonic signals, it indicates the relative
strength of higher and lower harmonics. For example, in the four-tone signal, there is a
positive skew when the lower tone is dominant and a negative skew when the upper tone
is dominant.

fs = 16e3;
duration = 99;
tone = audioOscillator('SampleRate',fs,'NumTones',4,'SamplesPerFrame',fs,'Frequency',[500,2000,2500,4000],'Amplitude',[0,0.4,0.6,1]);

signal = [];
for i = 1:duration
 signal = [signal;tone()];
 tone.Amplitude = tone.Amplitude + [0.01,0,0,-0.01];
end

skewness = spectralSkewness(signal,fs);
t = linspace(0,size(signal,1)/fs,size(skewness,1))/60;

subplot(2,1,1)
spectrogram(signal,round(fs*0.05),round(fs*0.04),round(fs*0.05),fs,'yaxis','power')
view([-58 33])

subplot(2,1,2)
plot(t,skewness)
xlabel('Time (minutes)')
ylabel('Skewness')

19 Spectral Descriptors Chapter

19-8

Spectral Kurtosis

Spectral kurtosis (spectralKurtosis) is computed from the fourth order moment [1]:

μ4 =
∑k = b1

b2 fk− μ1
4sk

μ2
4∑k = b1

b2 sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are

both commonly used.

 Spectral Descriptors

19-9

• b1 and b2 are the band edges, in bins, over which to calculate the spectral kurtosis.
• μ1 is the spectral centroid.
• μ2 is the spectral spread.

The spectral kurtosis measures the flatness, or non-Gaussianity, of the spectrum around
its centroid. Conversely, it is used to indicate the peakiness of a spectrum. For example,
as the white noise is increased on the speech signal, the kurtosis decreases, indicating a
less peaky spectrum.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

noiseGenerator = dsp.ColoredNoise('Color','white','SamplesPerFrame',size(audioIn,1));

noise = noiseGenerator();
noise = noise/max(abs(noise));
ramp = linspace(0,.25,numel(noise))';
noise = noise.*ramp;

audioIn = audioIn + noise;

kurtosis = spectralKurtosis(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(audioIn,1));
subplot(2,1,1)
plot(t,audioIn)
ylabel('Amplitude')

t = linspace(0,size(audioIn,1)/fs,size(kurtosis,1));
subplot(2,1,2)
plot(t,kurtosis)
xlabel('Time (s)')
ylabel('Kurtosis')

19 Spectral Descriptors Chapter

19-10

Spectral Entropy

Spectral entropy (spectralEntropy) measures the peakiness of the spectrum [6]:

entropy =
−∑k = b1

b2 sklog sk

log b2− b1

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are

both commonly used.

 Spectral Descriptors

19-11

• b1 and b2 are the band edges, in bins, over which to calculate the spectral entropy.

Spectral entropy has been used successfully in voiced/unvoiced decisions for automatic
speech recognition [6]. Because entropy is a measure of disorder, regions of voiced
speech have lower entropy compared to regions of unvoiced speech.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

entropy = spectralEntropy(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(audioIn,1));
subplot(2,1,1)
plot(t,audioIn)
ylabel('Amplitude')

t = linspace(0,size(audioIn,1)/fs,size(entropy,1));
subplot(2,1,2)
plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')

19 Spectral Descriptors Chapter

19-12

Spectral entropy has also been used to discriminate between speech and music [7] [8].
For example, compare histograms of entropy for speech, music, and background audio
files.

fs = 8000;
[speech,speechFs] = audioread('Rainbow-16-8-mono-114secs.wav');
speech = resample(speech,fs,speechFs);
speech = speech./max(speech);

[music,musicFs] = audioread('RockGuitar-16-96-stereo-72secs.flac');
music = sum(music,2)/2;
music = resample(music,fs,musicFs);
music = music./max(music);

 Spectral Descriptors

19-13

[background,backgroundFs] = audioread('Ambiance-16-44p1-mono-12secs.wav');
background = resample(background,fs,backgroundFs);
background = background./max(background);

speechEntropy = spectralEntropy(speech,fs);
musicEntropy = spectralEntropy(music,fs);
backgroundEntropy = spectralEntropy(background,fs);

figure
h1 = histogram(speechEntropy);
hold on
h2 = histogram(musicEntropy);
h3 = histogram(backgroundEntropy);

h1.Normalization = 'probability';
h2.Normalization = 'probability';
h3.Normalization = 'probability';
h1.BinWidth = 0.01;
h2.BinWidth = 0.01;
h3.BinWidth = 0.01;
title('Spectral Entropy')
legend('Speech','Music','Background','Location',"northwest")
xlabel('Entropy')
ylabel('Probability')
hold off

19 Spectral Descriptors Chapter

19-14

Spectral Flatness

Spectral flatness (spectralFlatness) measures the ratio of the geometric mean of
the spectrum to the arithmetic mean of the spectrum [9]:

flatness =
∏k = b1

b2 sk

1
b2 − b1

1
b2 − b1

∑k = b1
b2 sk

where

 Spectral Descriptors

19-15

• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are
both commonly used.

• b1 and b2 are the band edges, in bins, over which to calculate the spectral flatness.

Spectral flatness is an indication of the peakiness of the spectrum. A higher spectral
flatness indicates noise, while a lower spectral flatness indicates tonality.

[audio,fs] = audioread('WaveGuideLoopOne-24-96-stereo-10secs.aif');
audio = sum(audio,2)/2;

noise = (2*rand(numel(audio),1)-1).*linspace(0,0.05,numel(audio))';

audio = audio + noise;

flatness = spectralFlatness(audio,fs);

subplot(2,1,1)
t = linspace(0,size(audio,1)/fs,size(audio,1));
plot(t,audio)
ylabel('Amplitude')

subplot(2,1,2)
t = linspace(0,size(audio,1)/fs,size(flatness,1));
plot(t,flatness)
ylabel('Flatness')
xlabel('Time (s)')

19 Spectral Descriptors Chapter

19-16

Spectral flatness has also been applied successfully to singing voice detection [10] and to
audio scene recognition [11].

Spectral Crest

Spectral crest (spectralCrest) measures the ratio of the maximum of the spectrum to
the arithmetic mean of the spectrum [1]:

crest =
max skϵ b1, b2

1
b2 − b1

∑k = b1
b2 sk

where

 Spectral Descriptors

19-17

• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are
both commonly used.

• b1 and b2 are the band edges, in bins, over which to calculate the spectral crest.

Spectral crest is an indication of the peakiness of the spectrum. A higher spectral crest
indicates more tonality, while a lower spectral crest indicates more noise.

[audio,fs] = audioread('WaveGuideLoopOne-24-96-stereo-10secs.aif');
audio = sum(audio,2)/2;

noise = (2*rand(numel(audio),1)-1).*linspace(0,0.2,numel(audio))';

audio = audio + noise;

crest = spectralCrest(audio,fs);

subplot(2,1,1)
t = linspace(0,size(audio,1)/fs,size(audio,1));
plot(t,audio)
ylabel('Amplitude')

subplot(2,1,2)
t = linspace(0,size(audio,1)/fs,size(crest,1));
plot(t,crest)
ylabel('Crest')
xlabel('Time (s)')

19 Spectral Descriptors Chapter

19-18

Spectral Flux

Spectral flux (spectralFlux) is a measure of the variability of the spectrum over time
[12]:

flux t = ∑
k = b1

b2
sk t − sk t − 1 p

1
p

where

• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are
both commonly used.

 Spectral Descriptors

19-19

• b1 and b2 are the band edges, in bins, over which to calculate the spectral flux.
• p is the norm type.

Spectral flux is popularly used in onset detection [13] and audio segmentation [14]. For
example, the beats in the drum track correspond to high spectral flux.

[audio,fs] = audioread('FunkyDrums-48-stereo-25secs.mp3');
audio = sum(audio,2)/2;

flux = spectralFlux(audio,fs);

subplot(2,1,1)
t = linspace(0,size(audio,1)/fs,size(audio,1));
plot(t,audio)
ylabel('Amplitude')

subplot(2,1,2)
t = linspace(0,size(audio,1)/fs,size(flux,1));
plot(t,flux)
ylabel('Flux')
xlabel('Time (s)')

19 Spectral Descriptors Chapter

19-20

Spectral Slope

Spectral slope (spectralSlope) measures the amount of decrease of the spectrum
[15]:

slope =
∑k = b1

b2 fk− μf sk− μs

∑k = b1
b2 fk− μf

2

where

• fk is the frequency in Hz corresponding to bin k.

 Spectral Descriptors

19-21

• μf is the mean frequency.
• sk is the spectral value at bin k. The magnitude spectrum is commonly used.
• μs is the mean spectral value.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral slope.

Spectral slope has been used extensively in speech analysis, particularly in modeling
speaker stress [19]. The slope is directly related to the resonant characteristics of the
vocal folds and has also been applied to speaker identification [21]. Spectral slope is a
socially important aspect of timbre. Spectral slope discrimination has been shown to
occur in early childhood development [20]. Spectral slope is most pronounced when the
energy in the lower formants is much greater than the energy in the higher formants.

[female,femaleFs] = audioread('FemaleSpeech-16-8-mono-3secs.wav');
female = female./max(female);

femaleSlope = spectralSlope(female,femaleFs);
t = linspace(0,size(female,1)/femaleFs,size(femaleSlope,1));
subplot(2,1,1)
spectrogram(female,round(femaleFs*0.05),round(femaleFs*0.04),round(femaleFs*0.05),femaleFs,'yaxis','power')

subplot(2,1,2)
plot(t,femaleSlope)
title('Female Speaker')
ylabel('Slope')
xlabel('Time (s)')

19 Spectral Descriptors Chapter

19-22

Spectral Decrease

Spectral decrease (spectralDecrease) represents the amount of decrease of the
spectrum, while emphasizing the slopes of the lower frequencies [1]:

decrease =
∑k = b1 + 1

b2 sk− sb1
k− 1

∑k = b1 + 1
b2 sk

where

• sk is the spectral value at bin k. The magnitude spectrum is commonly used.

 Spectral Descriptors

19-23

• b1 and b2 are the band edges, in bins, over which to calculate the spectral decrease.

Spectral decrease is used less frequently than spectral slope in the speech literature, but
it is commonly used, along with slope, in the analysis of music. In particular, spectral
decrease has been shown to perform well as a feature in instrument recognition.[22]

[guitar,guitarFs] = audioread('RockGuitar-16-44p1-stereo-72secs.wav');
guitar = mean(guitar,2);
[drums,drumsFs] = audioread('RockDrums-44p1-stereo-11secs.mp3');
drums = mean(drums,2);

guitarDecrease = spectralDecrease(guitar,guitarFs);
drumsDecrease = spectralDecrease(drums,drumsFs);

t1 = linspace(0,size(guitar,1)/guitarFs,size(guitarDecrease,1));
t2 = linspace(0,size(drums,1)/drumsFs,size(drumsDecrease,1));

subplot(2,1,1)
plot(t1,guitarDecrease)
title('Guitar')
ylabel('Decrease')
axis([0 10 -0.3 0.3])

subplot(2,1,2)
plot(t2,drumsDecrease)
title('Drums')
ylabel('Decrease')
xlabel('Time (s)')
axis([0 10 -0.3 0.3])

19 Spectral Descriptors Chapter

19-24

Spectral Rolloff Point

The spectral rolloff point (spectralRolloffPoint) measures the bandwidth of the
audio signal by determining the frequency bin under which a given percentage of the
total energy exists [12]:

Rolloff Point = i such that ∑
k = b1

i
sk = κ ∑

k = b1

b2
sk

where

• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are
both commonly used.

 Spectral Descriptors

19-25

• b1 and b2 are the band edges, in bins, over which to calculate the spectral flux.

• κ is the specified energy threshold, usually 95% or 85%.

i is converted to Hz before it is returned by spectralRolloffPoint.

The spectral rolloff point has been used to distinguish between voiced and unvoiced
speech, speech/music discrimination [12], music genre classification [16], acoustic scene
recognition [17], and music mood classification [18]. For example, observe the different
mean and variance of the rolloff point for speech, rock guitar, acoustic guitar, and an
acoustic scene.

dur = 5; % Clip out 5 seconds from each file.

[speech,fs1] = audioread('SpeechDFT-16-8-mono-5secs.wav');
speech = speech(1:min(end,fs1*dur));

[electricGuitar,fs2] = audioread('RockGuitar-16-44p1-stereo-72secs.wav');
electricGuitar = mean(electricGuitar,2); % Convert to mono for comparison.
electricGuitar = electricGuitar(1:fs2*dur);

[acousticGuitar,fs3] = audioread('SoftGuitar-44p1_mono-10mins.ogg');
acousticGuitar = acousticGuitar(1:fs3*dur);

[acousticScene,fs4] = audioread('MainStreetOne-24-96-stereo-63secs.wav');
acousticScene = mean(acousticScene,2); % Convert to mono for comparison.
acousticScene = acousticScene(1:fs4*dur);

r1 = spectralRolloffPoint(speech,fs1);
r2 = spectralRolloffPoint(electricGuitar,fs2);
r3 = spectralRolloffPoint(acousticGuitar,fs3);
r4 = spectralRolloffPoint(acousticScene,fs4);

t1 = linspace(0,size(speech,1)/fs1,size(r1,1));
t2 = linspace(0,size(electricGuitar,1)/fs2,size(r2,1));
t3 = linspace(0,size(acousticGuitar,1)/fs3,size(r3,1));
t4 = linspace(0,size(acousticScene,1)/fs4,size(r4,1));

figure
plot(t1,r1)
title('Speech')
ylabel('Rolloff Point (Hz)')
xlabel('Time (s)')
axis([0 5 0 4000])

19 Spectral Descriptors Chapter

19-26

figure
plot(t2,r2)
title('Rock Guitar')
ylabel('Rolloff Point (Hz)')
xlabel('Time (s)')
axis([0 5 0 4000])

 Spectral Descriptors

19-27

figure
plot(t3,r3)
title('Acoustic Guitar')
ylabel('Rolloff Point (Hz)')
xlabel('Time (s)')
axis([0 5 0 4000])

19 Spectral Descriptors Chapter

19-28

figure
plot(t4,r4)
title('Acoustic Scene')
ylabel('Rolloff Point (Hz)')
xlabel('Time (s)')
axis([0 5 0 4000])

 Spectral Descriptors

19-29

References

[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and
Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

[2] Grey, John M., and John W. Gordon. “Perceptual Effects of Spectral Modifications on
Musical Timbres.” The Journal of the Acoustical Society of America. Vol. 63, Issue 5, 1978,
pp. 1493–1500.

[3] Raimy, Eric, and Charles E. Cairns. The Segment in Phonetics and Phonology.
Hoboken, NJ: John Wiley & Sons Inc., 2015.

[4] Jongman, Allard, et al. “Acoustic Characteristics of English Fricatives.” The Journal of
the Acoustical Society of America. Vol. 108, Issue 3, 2000, pp. 1252–1263.

19 Spectral Descriptors Chapter

19-30

[5] S. Zhang, Y. Guo, and Q. Zhang, "Robust Voice Activity Detection Feature Design
Based on Spectral Kurtosis." First International Workshop on Education Technology and
Computer Science, 2009, pp. 269–272.

[6] Misra, H., S. Ikbal, H. Bourlard, and H. Hermansky. "Spectral Entropy Based Feature
for Robust ASR." 2004 IEEE International Conference on Acoustics, Speech, and Signal
Processing.

[7] A. Pikrakis, T. Giannakopoulos, and S. Theodoridis. "A Computationally Efficient
Speech/Music Discriminator for Radio Recordings." International Conference on Music
Information Retrieval and Related Activities, 2006.

[8] Pikrakis, A., et al. “A Speech/Music Discriminator of Radio Recordings Based on
Dynamic Programming and Bayesian Networks.” IEEE Transactions on Multimedia. Vol.
10, Issue 5, 2008, pp. 846–857.

[9] Johnston, J.d. “Transform Coding of Audio Signals Using Perceptual Noise Criteria.”
IEEE Journal on Selected Areas in Communications. Vol. 6, Issue 2, 1988, pp. 314–323.

[10] Lehner, Bernhard, et al. “On the Reduction of False Positives in Singing Voice
Detection.” 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2014.

[11] Y. Petetin, C. Laroche and A. Mayoue, "Deep Neural Networks for Audio Scene
Recognition," 2015 23rd European Signal Processing Conference (EUSIPCO), 2015.

[12] Scheirer, E., and M. Slaney. “Construction and Evaluation of a Robust Multifeature
Speech/Music Discriminator.” 1997 IEEE International Conference on Acoustics, Speech,
and Signal Processing, 1997.

[13] S. Dixon, "Onset Detection Revisited." International Conference on Digital Audio
Effects. Vol. 120, 2006, pp. 133–137.

[14] Tzanetakis, G., and P. Cook. “Multifeature Audio Segmentation for Browsing and
Annotation.” Proceedings of the 1999 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, 1999.

[15] Lerch, Alexander. An Introduction to Audio Content Analysis Applications in Signal
Processing and Music Informatics. Piscataway, NJ: IEEE Press, 2012.

[16] Li, Tao, and M. Ogihara. "Music Genre Classification with Taxonomy." IEEE
International Conference on Acoustics, Speech, and Signal Processing, 2005.

 Spectral Descriptors

19-31

[17] Eronen, A.j., V.t. Peltonen, J.t. Tuomi, A.p. Klapuri, S. Fagerlund, T. Sorsa, G. Lorho,
and J. Huopaniemi. "Audio-Based Context Recognition." IEEE Transactions on Audio,
Speech and Language Processing. Vol. 14, Issue 1, 2006, pp. 321–329.

[18] Ren, Jia-Min, Ming-Ju Wu, and Jyh-Shing Roger Jang. "Automatic Music Mood
Classification Based on Timbre and Modulation Features." IEEE Transactions on Affective
Computing. Vol. 6, Issue 3, 2015, pp. 236–246.

[19] Hansen, John H. L., and Sanjay Patil. "Speech Under Stress: Analysis, Modeling and
Recognition." Lecture Notes in Computer Science. Vol. 4343, 2007, pp. 108–137.

[20] Tsang, Christine D., and Laurel J. Trainor. "Spectral Slope Discrimination in Infancy:
Sensitivity to Socially Important Timbres." Infant Behavior and Development. Vol. 25,
Issue 2, 2002, pp. 183–194.

[21] Murthy, H.a., F. Beaufays, L.p. Heck, and M. Weintraub. "Robust Text-Independent
Speaker Identification over Telephone Channels." IEEE Transactions on Speech and Audio
Processing. Vol. 7, Issue 5, 1999, pp. 554–568.

[22] Essid, S., G. Richard, and B. David. "Instrument Recognition in Polyphonic Music
Based on Automatic Taxonomies." IEEE Transactions on Audio, Speech and Language
Processing. Vol 14, Issue 1, 2006, pp. 68–80.

19 Spectral Descriptors Chapter

19-32

